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Abstract

The focus of this paper is on the steady state of a two-sector economy with undi-

rected search where employed and unemployed workers can search for jobs, both

within a sector and between the sectors. As in the one-sector model, on-the-job

search generates wage dispersion among homogeneous workers. The analysis of the

two-sector model uncovers a property called constant tension that is responsible for

analytical tractability. We characterize the steady state in all cases with constant

tension. When time discounting vanishes, constant tension yields the endogenous

separation rate in each sector as a linear function of the present value for a worker.

The one-sector economy automatically satisfies constant tension, in which case the

linear separation rate implies that equilibrium offers of the worker value are uniformly

distributed. Constant tension also has strong predictions for worker transitions and

value/wage dispersion, both within a sector and between the two sectors. When con-

stant tension does not hold, we compute the steady state numerically and illustrate

its properties.
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1. Introduction

In a seminal paper, Burdett and Mortensen (1998, BM henceforth) explore on-the-job

search as a mechanism for generating job-to-job flows of workers and wage dispersion

simultaneously. Their analysis reveals a deep insight about the interaction between com-

petition and search frictions. On-the-job search generates the possibility that a worker

may leave a firm for other firms. Facing this possibility, a firm makes the optimal tradeoff

between recruiting and retaining a worker, on the one hand, and ex post profit on the other

hand. As a result of this tradeoff, equilibrium wage rates must be distributed continuously

in an interval, even though all workers and all firms are homogeneous.1

The BM model has found wide applications in labor and macroeconomics. It has been

used to explain residual wage inequality, i.e., the wage differential among workers that

seems difficult to be explained by worker and firm characteristics (van den Berg and Ridder,

1998; Bontemps et al., 2000; Mortensen, 2005). Also, by linking wage dispersion tightly

to on-the-job search, the BM model offers a natural framework for jointly studying job

mobility, wage dynamics, and the sorting pattern between firms and workers (Postel-Vinay

and Robin, 2002; Jolivet et al., 2006; Lise and Robin, 2013; Moscarini and Postel-Vinay,

2013). Moreover, the BM model is extended to explain the interaction between job mobility

and wage-tenure contracts (Burdett and Coles, 2003).

In this paper, we analyze a BM model with two sectors that compete for the same

pool of workers. There are two motivations for this study. One is theoretical and is to

understand why the steady state of the BM model is analytically tractable despite that a

non-degenerate wage distribution arises endogenously from on-the-job search. To explore

the model, we reformulate an offer as the worker value, i.e., the present value delivered

to a worker by a wage rate conditional on the worker’s optimal separation in the future.

This follows recent developments in the search literature (e.g., Burdett and Coles, 2003;

Shi, 2009; Menzio and Shi, 2011). With homogeneous workers, dispersion in worker values

1In a related model of the product market, Burdett and Judd (1983) generate a non-degenerate dis-

tribution of prices by assuming that some buyers can receive two price quotes before selecting one. The

outside offer that an employed worker receives in the BM model acts like the second price quote.
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represents true residual inequality, whereas dispersion in wage rates may not necessarily

do so. With two sectors, in particular, a higher wage is not necessarily a better offer to

a worker, depending on which sector the offer comes from, but a higher value is always a

better offer. Thus, reformulating an offer as the worker value simplifies a worker’s transition

decision: a worker accepts higher values no matter which sector they come from. With

this reformulation, we discover a feature called constant tension that is responsible for

analytical tractability and, importantly, this role of constant tension becomes apparent

only if one considers a two-sector model (see the description later). The one-sector BM

model has constant tension automatically.

Our second motivation is empirical and is to understand how on-the-job search affects

equilibrium dispersion and worker mobility between sectors when firms in different sectors

compete for workers in the same labor market.2 As documented by Lee and Wolpin (2006),

there are direct transitions of workers between sectors. In a two-sector BM model, these

between-sector transitions generate a link between the entire wage distributions in the

sectors. This link is consistent with the empirical analysis in Hoffmann and Shi (2011),

who show that rising monthly transition rates of employed workers from the non-service

sector to the service sector over the last four decades were accompanied by a faster increase

in residual wage inequality in the service sector. A two-sector BM model is a natural

candidate for organizing these facts. Before enriching the model with worker and firm

heterogeneity, it is useful to examine its analytical properties with homogeneous workers

and firms first, which we do in this paper.

In our model, as in BM, both employed workers and unemployed workers can search,

each firm offers and commits to a constant wage rate over the worker’s employment in the

firm, and the offer arrival rate from a sector to a worker is exogenous. In contrast to BM,

there are two sectors (A and B). A firm can create a vacancy in either sector and a worker

can receive an offer from either sector. The two sectors can differ in the value of output

2Beaudry, et al. (2012) use a multi-sector search model to show that even without direct employment

transitions between sectors or on-the-job search, there is an equilibrium force that affects the industrial

composition and inter-sectoral wage differentials. In an extensive empirical analysis they show this force

to be quantitatively important.
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produced in a match, in the offer arrival rates, and in the rate of exogenous separation into

unemployment. Moreover, the rate at which an employed worker receives an offer from the

incumbent sector may differ from the rate of an offer from the other sector. We assume

that a job in sector A produces a higher value than a job in sector B, refer to sector A as

the high-productivity sector and sector B as the low-productivity sector.

In each sector, there is an interval of offers (of the worker value) that are optimal for a

firm. A high offer increases the success in recruiting and reduces the endogenous quit rate

of the worker in the future, at the cost of a lower profit flow of the job. All optimal offers

maximize expected profit of a vacancy in a sector. In addition, because a firm can locate

the vacancy in either sector, expected profit of a vacancy is equalized between the two

sectors in the equilibrium. Competition among firms endogenously determines the relative

size between the two sectors and the distribution of workers over values within each sector

in the steady state. Because workers can receive offers from either sector, the hiring rate

of a vacancy depends on the employed distributions of workers over values in both sectors.

Similarly, the separation rate of a worker, which includes both exogenous separation and

endogenous quits, depends on the offer distributions in both sectors.

A notable property is that the product of the hiring rate of a vacancy and the separation

rate of a worker is constant over worker values in the support of the distribution in a sector.

We refer to this property as constant tension in the sector and show that it makes the

steady state tractable. Equivalently, constant tension requires the marginal intensities of

hiring and separation to be equal to each other at every worker value in the support of the

distribution in a sector. With constant tension, the hiring rate of a vacancy at each offer

in a sector is tied to the separation rate at that offer in that sector. As all endogenous

elements of expected profit of a vacancy are related exclusively to the separation rate, the

condition of equal expected profit of a vacancy solves the separation rate as a function of

the offer. Moreover, in the limit where time discounting, , goes to zero, the solution of

the separation rate in each sector is a linear function of the worker value. We examine all

(three) cases of the steady state with constant tension.
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The first case is the one-sector BMmodel. An isolated sector automatically has constant

tension, because the marginal intensities of hiring and separation must be equal to each

other in order to maintain the steady state in a one-sector economy. Constant tension is the

source of analytical tractability of the one-sector BM model. Not only can the steady state

be solved analytically, but also the equilibrium offer distribution has a strikingly simple

form. The linear solution of the separation rate immediately implies that offer values are

uniformly distributed in the limit  → 0. In contrast, wage rate offers are distributed

according to a square-root function, as is well known from BM.

The second case is one in which workers employed in one sector cannot search in the

other sector while unemployed workers can search in both sectors. Despite the restrictive

nature, this case encompasses all multi-sectoral search models without on-the-job search

(e.g., Beaudry, et al., 2012) as a special case and reveals equilibrium forces that are absent in

these studies. Specifically, employed workers’ search within their incumbent sector affects

expected profit of a vacancy, thereby affecting the distributions of wage rates/values in

both sectors and all workers’ transitions. In the limit  → 0, value offers are uniformly

distributed in each sector. The lowest value offered in the two sectors is the same, which

implies that the two sectors’ distributions overlap on some interior values of their supports.

In general, the two sectors offer different ranges of values/wages. We find the necessary and

sufficient conditions under which the range of values/wages is wider in the high-productivity

sector than in the low-productivity sector. Moreover, we show that an increase in the

unemployment benefit affects the two sectors differently in the steady state, including the

effect on the transition rates of workers.

The third case is one in which the distributions of worker values in the two sectors

do not overlap in the interior of their supports. In this case, the highest value in the

low-productivity sector B is equal to the lowest value in the high-productivity sector A.

Between-sector search by employed workers restricts the distributions of workers in the

two sectors. Even if a firm in sector A can reduce the offer below the highest value offered

in sector B, it is not optimal to do so because the lower offer reduces the firm’s hiring

rate from the other sector and increases future separation of a worker from the firm into
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the other sector. Not surprisingly, this non-overlapping steady state exists with two active

sectors if and only if the productivity differential between the two sectors is neither too

large nor too small, where the bounds on this differential depend on the parameters of

search and exogenous separation. Although worker values do not overlap between the two

sectors, wage rates in the two sectors can overlap. We analyze how an increase in the

unemployment benefit affects the ranges of wage rates and values offered in each sector.

When the sectors do not have constant tension, we are not able to solve the steady state

analytically. In this case, we compute the model numerically to illustrate the properties of

the steady state.

Since this paper builds on BM, it is related to the large literature that has extended

BM in a one-sector environment; see some papers cited earlier. The literature on BM

with more than one sector is relatively small. Burdett (2012) seems to be the first one

to extend BM to have two sectors: a private sector and a public sector. He assumes that

the wage rate in the public sector is exogenously fixed at one level and examines how

this public-sector wage rate affects wage dispersion and worker mobility in the private

sector. Bradley, et al. (2014) extend Burdett’s model to allow the distribution of wage

rates in the public sector to be non-degenerate and estimate the structural parameters

of the model. They keep the assumption that the wage distribution in the public sector

is exogenous. Meghir, et al. (2015) formulate a model with a formal and an informal

sector and estimate the structural parameters from Brazilian data. Using the method in

Bontemps, et al. (2000), they estimate the employed wage distributions from the data,

take these employed distributions as given and then solve the endogenous offer distributions

under some parametric restrictions.

In contrast to these papers, we endogenize both the offer and the employed wage dis-

tributions in both sectors. The joint determination of these four equilibrium distributions

is the main challenge to the analysis of a two-sector BM model, but it has two major

advantages over the approach in Meghir, et al. (2015) or Bradley, et al. (2014) who esti-

mate two of these four objects from the data and taking them as given. First, it is this
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joint determination that captures the strategic interactions between firms posting wages in

either sector and competing for the same workers that generate a deep inter-dependence

between the sector specific wage structures and various worker flows. As we show, the

types of equilibria that can arise depend crucially on the assumptions on the parameters

one is willing to make. Such results remain hidden if one does not solve the four equations

jointly. Second, by determining all of the distributions jointly rather than taking some of

them as given, our approach is suitable for a wide set of counterfactual policy analyses.

Another distinction is our analytical focus. This focus leads to the finding that constant

tension is the source of analytical tractability of the steady state in the BM model and

to the simple solutions of the separation rate and the offer distribution in each sector.

We hope that these results greatly expand the knowledge of the BM model and will have

independent use beyond this particular model.

2. The Model

2.1. The Model Environment

Time is continuous. The economy is populated by a unit mass of workers and a unit mass of

firms.3 Workers and firms are risk neutral and discount future at the rate . There are two

sectors, indexed by  ∈ {}. For each sector , let − denote the other sector. A worker
can work, and a firm can create a vacancy, in either sector. As a result, the distributions

of workers and firms between the two sectors are endogenous in the equilibrium. Let  be

the mass of firms in sector ,  the mass of workers employed in sector , and  the mass

of unemployed workers. Then, + = 1 and + + = 1. We assume that a firm

can post only one vacancy at a time and treats its filled jobs independently.4 All workers

3For simplicity and comparison with BM, we fix the total measure of firms in the economy and focus on

the endogenous distribution of firms between the two sectors. It is not difficult to endogenize this measure

by allowing for free entry of firms.
4This assumption contrasts with BM who emphasize the tradeoff between the wage offer and firm size

in the limit  → 0. Although their analysis in this limit can be extended to two sectors, it becomes

complicated when   0. In particular, if a firm in one sector has no presence in the other sector but

deviates to fill a vacancy in the other sector, the firm will start in the other sector with a size different

from other firms in that sector. It is difficult to deal with this phenomenon out of the steady state. By

assuming that all jobs in a firm are treated independently, we eliminate this difficulty. Despite this different
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can search for jobs. An unemployed worker enjoys a flow of income, .

The two sectors differ from each other in three possible ways. First, the value of output

produced in a match is sector specific and denoted  for sector . We refer to  as sector

’s productivity (see the discussion later) and assume     . Sector  is the

high-productivity sector and sector  the low-productivity sector. Second, in addition to

endogenous separation induced by workers’ search on the job, a worker-job pair in sector

 exogenously separates at the rate . Third, the two sectors may differ in search rates.

An unemployed worker receives an offer from sector  at the rate . A worker employed

in sector  receives an offer from sector  at the rate  and from the other sector at the

rate −. The rates of search and exogenous separation are listed in Table 1. Let us refer

to  and  as within-sector search rates, and  and  as between-sector search rates.

The rates  and  can be positive or zero, but ,  and  are strictly positive and

finite for both  = . For the general analysis, we do not restrict the relative magnitude

of between-sector search rates to within-sector search rates, or the relative magnitude of

employed workers’ search rates to unemployed workers’ search rates.

Table 1. Rates of search and exogenous separation

workers’

status

Â
rates

separation into

unemployment

arrival rate of

an offer from

Sector A firms Sector B firms

Unemployed  

Employed in sector A   
Employed in sector B   

Productivity in this model is specific to a sector, but not to a worker, a firm, or a

match. This assumption is not meant to dismiss the empirical relevance of heterogeneity

originated in workers, firms or matches. Rather, the assumption enables us to focus on

how the introduction of sectoral productivity into BM can affect wage/value dispersion and

worker flows both within a sector and between the two sectors. If productivity depends on

workers, firms, or matches, wage/value dispersion can arise even without the mechanism

emphasized by BM. As an empirical issue, different sectors may use different production

assumption, our analysis preserves the spirit of BM’s analysis by emphasizing the tradeoff between the

wage offer and the probability of filling a vacancy.
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technologies. If so, then different sectors can have different levels of productivity even after

controlling for observable differences in workers, firms and matches. Moreover, different

sectors may produce different goods or services that differ in prices. Although  is referred

to as productivity, it is the value of output produced in a match. Hence, the difference in

product prices between the two sectors can be an important cause of the difference in .

The assumption of fixed (  ) implies that the measure of meetings between workers

and sector  firms is (+  + −). This meeting function has constant returns to

scale in (  −) but is independent of , the measure of vacancies in sector . The

meeting rate of a vacancy in sector  with an unemployed worker, for example, is ,

which has elasticity −1 with respect to . It is undoubtedly more realistic to specify

a general meeting function so as to make the arrival rate of an offer from sector  to

a worker increase in , in which case the meeting rate of a vacancy in sector  is less

elastic with respect to . We keep the simple specification for a number of reasons.

First, the general specification introduces non-linearity in ( −) that contributes

little to the understanding of when the steady state is tractable. As will become clear later,

the between-sector dependence of the hiring and separation rates on the distributions of

values, not the dependence on the measures of firms and workers, is the key obstacle to

tractability. Second, the simple specification emphasizes competition among firms with

a high elasticity of the meeting rate of a vacancy. This emphasis seems appropriate in

this model because firms, not workers, are assumed to be able to choose between the two

sectors before matching occurs. The specification is also convenient for incorporating free

entry of vacancies in the economy, although this extension is omitted here to save space.

Third, the specification ensures comparability with BM. In our model, it is straightforward

to shut down employed workers’ search between the sectors by setting  =  = 0.

As in BM, we focus on the steady state and maintain the following assumptions. First,

search is undirected in the sense that a worker does not choose which offer to apply for;

instead, an offer arrives at an exogenous rate described above. Second, firms do not respond

to a worker’s outside offer. Instead, a worker who receives an outside offer decides either

to take the offer and quit the current job, or reject the offer and stay at the current job.
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Third, an offer is a wage rate that is constant during the worker’s employment in the firm.5

A wage rate  yields an expected lifetime utility or value,  , given the worker’s optimal

strategy in the future. The same wage rate in the two sectors may imply different values,

because the two sectors have different job separation rates and arrival rates of future offers.

Conversely, different wage rates may be needed in the two sectors in order to generate the

same value. Since workers and firms rank offers by the value, rather than the wage rate,

we will henceforth refer to the worker value  as an offer. Similarly, let  be the value

for an unemployed worker. Because an unemployed worker can receive offers in addition

to the unemployment benefit, then  ≥ .

On-the-job search generates a non-degenerate, continuous distribution of worker values

in each sector, for the same reason as in BM. Suppose to the contrary that a mass of firms

in sector  offer a value 0  . An individual firm deviating to a slightly higher offer

0+, where   0, will attract this mass of workers. The deviation is profitable because it

increases the acceptance probability by a discrete amount which is more than compensating

for the slightly higher offer. This contradicts the supposition that the distribution of offers

is discontinuous at 0   in an equilibrium.

In sector , let  be the cumulative distribution function of values offered and 

the cumulative distribution function of values at which workers are employed. These two

distributions are endogenous and have the same support denoted supp ≡
£
  ̄

¤
. The

function  is referred to as the offer distribution, and  as the employed distribution.

Offers are bounded below by   ≥ , because a worker is better off staying unemployed

than accepting an offer lower than . Also, because wages cannot exceed output, offers

are bounded above by  in sector . Let [ ̄] be the support of wage rates in sector .

Assumption 1.  and  are differentiable in the interior of supp except possibly when

an interior point is on the boundary of supp−. In addition,   ≥  .

5For models of on-the-job search in which search is directed by firms’ offers, see Delacroix and Shi

(2006) and Shi (2009). For on-the-job search models that allow for wage-tenure contracts, see Burdett and

Coles (2003) and Shi (2009). Postel-Vinay and Robin (2002) and Lise and Robin (2013) allow firms to

compete against outside offers in a second-price auction.
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Differentiability of the cumulative distributions captures the intuitive feature that a

firm’s tradeoff between different offers is smooth. A possible exception is an interior point

in sector ’s support that is also a boundary point of sector −’s support, at which sector ’s
cumulative distributions may fail to be differentiable (see Lemma 2.2).6 The assumption

  ≥   is natural since sector A has higher productivity than sector B.
7 Note that we

do not impose ̄ ≥ ̄. Also, the supports of the two sectors’ distributions may overlap.

Remark 1.   =  and   ≤ ̄. If   ≥ ̄, then   = ̄.

The results in this remark are intuitive. If    , instead, a firm in sector  that

offers   can profit by deviating to a slightly lower offer. This deviation is profitable

because the offer has the same rate of acceptance as the offer   but yields higher profit

if the vacancy is filled. Similarly, with the focus on   ≥  , it must be the case that

  ≤ ̄. If    ̄, instead, a firm offering   in sector A can profit by deviating to

an offer between ̄ and  . This deviating offer has the same rate of acceptance as the

offer   has (i.e., by unemployed workers and by those employed in sector B) but yields

higher ex post profit, which cannot be an equilibrium.

The equilibrium has two possible configurations, as depicted in Figure 1. The only

difference between the two configurations is that ̄ ≥ ̄ in configuration 1 but ̄  ̄

in configuration 2. In configuration 1, it is possible that   = ̄ or   =  . In

configuration 2, it is possible that   =  . Note that even though   ≥   by

assumption, the equilibrium may have   . A worker may be willing to start at

a low wage rate in sector  if sector  has a higher job-to-job transition rate and/or a

larger room for wage growth. In general, a job with a higher value is a better job for a

worker, regardless of which sector the job is located, but a job with a higher wage rate

may not necessarily be a better job, depending on the sector in which the job is located.

6In the one-sector BM model, one can prove that the distributions are differentiable in the interior

of the support by arguing that a firm’s expected profit of a vacancy must be differentiable. This proof

can break down in a two-sector model, because the two sectors’ distributions can be non-differentiable in

particular ways without making a firm’s expected profit non-differentiable.
7Sections 4 and 5 will specify the restrictions on the parameters for the equilibrium to have   ≥  .

The analysis can be modified for the case with     .
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This contrast between the value and the wage rate illustrates one of the advantages of

formulating the equilibrium in terms of values rather than wage rates as in BM.

Configuration 1: −|−−−−− −− −|− −− −|− −− −|−
  =    ̄ ̄

Configuration 2: −|−−−−− −− −|− −− −|− −− −|−
  =    ̄ ̄

Figure 1. Equilibrium configurations

2.2. Workers’ Value Functions and Optimal Choices

A worker accepts an offer if and only if the offer is higher than or equal to the value of

the worker’s current position. We characterize the steady-state value functions of workers

when the equilibrium has ̄ ≥ ̄. Straightforward modifications of the equations yield

the value functions in the case ̄  ̄.

Start with an unemployed worker. Such a worker gets the unemployment benefit, ,

and receives an offer from sector  at the rate . Since an unemployed worker accepts all

 ≥ , the value  obeys the following Bellman equation:

 = + 

Z ̄

 

(− ) () + 

Z ̄

 

(− ) ()

The term  is the “permanent income” associated with the present value . The right-

hand side of the equation is the sum of the flow of income, , and expected “capital gains”

in the future. Integrating by parts and using the result   = , we rewrite

 = + 

"
  −  +

Z ̄

 

[1− ()] 

#
+ 

Z ̄

 

[1− ()]  (2.1)

The term (  − ) appears here because 1−  () = 1 for all  ≤  .

Consider a worker employed in sector  at a wage rate  that generates a value  to

the worker, where  ∈ supp =
£
  ̄

¤
. The worker receives an outside offer from sector

A at the rate  and from sector B at the rate . An offer  from either sector is accepted

iff  ≥  . If  ∈ [  ̄), there is positive probability that an acceptable offer comes

11



from either sector. On the other hand, if  ∈ [̄ ̄], no offer from sector  dominates

the worker’s current employment. Taking into account the exogenous separation rate, ,

we can derive the Bellman equation for the worker value  in sector  as

 =  + 
R ̄

[1− ()] + 

R ̄

[1− ()] +  ( −  )

if  ∈ [  ̄];

 =  + 
R ̄

[1− ()] +  ( −  ) if  ∈ (̄ ̄].

(2.2)

Similarly, consider a worker employed in sector B at a wage rate  that yields the

present value  ∈ supp =
£
  ̄

¤
. This worker accepts an offer  if and only if

 ≥  , regardless of whether the offer comes from sector A or B. We separate the case

where  ∈ [   ) from the case where  ∈ [  ̄], because integration by parts yields

different expressions in the two cases. The Bellman equation for  in sector  is:

 =  + 
R ̄

[1− ()] + 

h
  −  +

R ̄
 
[1− ()] 

i
+ ( −  ) if  ∈ [   ) ;

 =  + 
R ̄

[1− ()] + 

R ̄

[1− ()] +  ( −  )

if  ∈ [  ̄].

(2.3)

It is useful to rewrite (2.2) and (2.3) by keeping the wage rate on one side and moving

all other terms to the other side of the equation. Doing so yields the wage rate  as a

function of  . Denote this function in sector  as  ( ) and referred to it as the wage

function in sector . For any  , the wage function in sector  specifies the wage rate that

is needed to deliver  in sector . The wage function is sector specific because the same

value may require different wage rates to deliver in the two sectors.

The wage function is continuously differentiable, as shown from (2.2) and (2.3):

0 ( ) =  +  ( ) for all  ≥ , (2.4)

where  ( ) is the separation rate from a job at value  in sector  and is defined as

 ( ) ≡  +  [1− ( )] + − [1− −( )] for all  ≥ . (2.5)

The separation rate in sector  is the sum of the rate of endogenous separation to another

job in sector ,  [1−  ( )], endogenous separation to a job in the other sector −,
12



− [1− − ( )], and exogenous separation, . The effective discount rate in sector  is

( + ), because job separation terminates the flow of wage income and profit of match.

Thus, (2.4) states intuitively that to increase the present value for a worker by a marginal

unit, the wage rate must increase by the effective discount rate. Moreover, because the

density functions are non-negative, then 0 ( ) ≤ 0, with strict inequality if  0
 ( )  0 or

 0
 ( )  0. A higher offer reduces separation.

2.3. Firms’ Value Functions and Optimal Choices

A firm chooses the sector in which to post a vacancy and the offer to make. Since a firm

can post only one vacancy at a time and the total measure of firms is fixed at one, the

total measure of vacancies in the economy is one at every instant. Thus, we normalize

the vacancy cost to zero without loss of generality. However, the distributions of vacancies

over offers within each sector and between the two sectors are endogenously determined

by the requirement that expected profit should be the same for all vacancies.

Suppose that a firm in sector  offers  ∈ supp. Three groups of workers accept this
offer. First, unemployed workers always accept the offer. Since the measure of vacancies

in sector  is , the rate at which the particular firm’s offer reaches unemployed worker

is . Second, workers who are employed in sector  at values lower than or equal

to  accept the offer. The measure of such workers is ( ), where  is the measure

of employed workers in sector  and  is the employed distribution function in sector .

The rate at which the particular firm’s offer is accepted by a worker employed in sector 

is ( ). Third, workers who are employed in sector − at values lower than or
equal to  accept the offer. The rate of such acceptance is −−( ). Therefore, a

firm offering  in sector  fills a vacancy at the rate  ( ) , where

( ) ≡ + ( ) + −−( ), for all  ≥ . (2.6)

Note that 0 ( ) ≥ 0, with strict inequality if the employed distribution in either sector
has strictly positive density at  . That is, a higher offer increases the hiring rate.

If the firm fills a vacancy, the flow of profit is [ −  ( )]. Because the effective
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discount rate in sector  is [ +  ( )], the filled job generates the present value of profits,

−( )
+( )

. The expected profit of a vacancy offering  in sector  is

̂ ( ) ≡
∙
 −  ( )

 +  ( )

¸
 ( )



 (2.7)

The firm chooses the offer to maximize ̂ ( ). The optimal offer makes the tradeoff similar

to that in BM. A higher offer reduces the flow of profits because it requires a higher wage

rate. However, a higher offer has the benefits in recruiting and retention. A higher offer

increases the hiring rate, which increases expected profit of a vacancy. In addition, because

a higher offer reduces the separation rate, it reduces the effective discount rate and, for

any given flow of profits, increases the present value of profits.

There is a continuum of offers that all make the optimal tradeoff between the cost

of the wage and the benefits in recruiting and retention. In sector , this continuum is

the interval, supp, on which the distributions  and  are formed. Let  denote the

maximized expected profit of a vacancy in sector . All values outside the support must

achieve strictly lower expected profit than . Thus,

̂ ( ) =  for all  ∈ supp, and ̂ ( )   for all  ∈ supp. (2.8)

It is useful to write (2.8) in a differential form. Consider any   . Expected profit

̂ ( ) is differentiable in the interior of supp, because  ( ),  ( ) and  ( ) are so.

Since ̂ ( ) is constant for all  ∈ supp, then ̂0 ( ) = 0 for such  ∈
¡
  ̄

¢
. Let   0

be sufficiently small. If  =  −, then ̂ ( )  ̂ ( ), and so ̂
0
 ( )  0. If  = ̄+,

then ̂ ( )  ̂ ( ), and so ̂
0
 ( )  0. Using (2.7) to compute ̂0 ( ), substituting 0

with (2.4) and taking the limit  ↓ 0, we express this implication of (2.8) as

0 ( )
 ( )

+
[−0 ( )]
 +  ( )

−  ( )

̂ ( )

⎧⎨⎩ = 0 if  ∈ ¡  ̄
¢

≥ 0 if  =  −
≤ 0 if  = ̄ +

 

(2.9)

Here,  − denotes an offer arbitrarily close to  on the left, and  + an offer arbitrarily

close to  on the right. The two inequalities are in the weak form because the limit

does not necessarily preserve strict inequalities. The three terms on the left-hand side are

proportional benefits and cost of a higher value offer. The first term is the proportional
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benefit in recruiting, and the second term is the proportional benefit in retention. The

third term is the proportional reduction in the profit flow caused by a higher wage rate,

where we substituted 0 using (2.4) and ( − ) using (2.7).

Now consider a firm’s choice of the sector in which to create a vacancy. The firm chooses

the sector that yields higher expected profit of a vacancy. If the two sectors co-exist, which

is our focus, expected profit of a vacancy must be the same in the two sectors. Let the

common expected profit be . The optimal choice between the two sectors implies

 =  for  = , . (2.10)

Remark 2. There is a close link between a firm’s optimization here and that in BM,

despite that we do not model firm size as BM do. BM focus on the limit  → 0. They

reason that a firm in this limit maximizes total profit, [ −  ( )]  ( ), where  is firm

size given by  ( ) =
0( )
 0( ) . In the limit  → 0 in our model, ̂ ( ) = [ −  ( )]

( )

( )

(see (2.7)) which coincides with that in BM because
( )

( )
=

0( )
 0( ) as established in (2.15).

2.4. Steady State Flows

For every equilibrium value  , the flow of workers into  must be equal to the flow out of

 in the steady state. For brevity, we analyze steady state flows for the configuration with

̄ ≥ ̄. Equilibrium values lie in
£
  ̄

¤
. We partition this interval into [   ),

[  ̄) and [̄ ̄], and calculate the flows of workers for each subinterval separately.

First, for any value  ∈ [   ), consider the group of workers employed in (  ).

These workers are in sector B only and their measure is [ ( )−( )]. A worker

in this group exits the group at the rate  ( ). To calculate the inflow, note that all

offers in the interval (  ) come from sector B. A random offer from sector B lies in

(  ) with probability [ ( )− ( )]. Since an offer in this interval is accepted by

unemployed workers and by the workers who are employed in sector B at values lower than

or equal to  , the acceptance rate is  ( ), where we have used the fact that  ( ) = 0
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for  ≤  .
8 Equating the outflow of workers from the group to the inflow, we have:

 ( )[ ( )−( )] =  ( ) [ ( )− ( )] if  ∈ [   ] , (2.11)

where  ( ) =  +  [1−  ( )] +  and  ( ) = + ( ).

Second, for any  ∈ [  ̄), consider the workers employed in sector A in ( ̄).

The measure of this group is [

¡
̄
¢−( )]. The steady-state flow equation is:


¡
̄
¢
[

¡
̄
¢−( )] + 

R ̄

[1−  ()] ()

=  ( ) [

¡
̄
¢− ( )]

+
R ̄

[

¡
̄
¢−  ()]() if  ∈ [  ̄).

(2.12)

The first term on the left-hand side is the measure of workers in the group who separate

exogenously into unemployment or accept offers in sector A that are higher than or equal

to ̄. The second term on the left-hand side is the measure of workers in the group who

accept offers in sector  that are higher than or equal to the current offer in sector A.

Although the values for these workers remain in ( ̄), they have switched the sector.

The first term on the right-hand side is the measure of workers who are at values lower

than  and are newly hired into the group. The second term on the right-hand side is the

measure of workers who are employed in sector  in ( ̄) and are newly hired into the

group in sector A.

Third, for any value  ∈ [  ̄), consider the group of workers employed in sector B

in ( ̄). The steady-state flow equation is analogous to (2.12):


¡
̄
¢
 [1−( )] + 

R ̄

[

¡
̄
¢−  ()]()

=  ( ) [1− ( )] + 
R ̄

[1−  ()] () if  ∈ [  ̄).

(2.13)

Finally, for any value  ∈ [̄ ̄], consider the group of workers employed in ( ̄].
These workers are employed in sector A only and their measure is [1−( )]. Following

the same procedure as the above, we can derive the following equation:


¡
̄
¢
 [1−( )] =  ( ) [1− ( )] , if  ∈ [̄ ̄] (2.14)

8The rate  is not divided by  here because it is the acceptance of the offers of all firms in the

group rather than of an individual firm.
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where 
¡
̄
¢
= , and  ( ) = + ( ) +  for  ∈

£
̄ ̄

¤
.

Differentiating (2.11) - (2.14) with respect to  , we obtain a simple and unified equation:


0
 ( )  ( ) =  ( )

0
 ( ) for all  . (2.15)

This equation states the intuitive result that, at every value  , the measure of workers

separating from  in each sector  must be equal to the measure of workers newly recruited

at  . Note that this equation holds for all  , not just for  on the support of the

distribution in the sector. For future use, we write this requirement equivalently as


0
 ( )

 ( )
=


0
 ( )

 ( )
for all  . (2.16)

Because 
0
 ( ) is the increase in hiring from other firms in sector , generated by a

marginal increase in the offer, we term the ratio


0
( )

( )
the marginal intensity of within-

sector hiring at  in sector . Similarly, because 
0
 ( ) is the reduction in separation of

workers to other firms in sector , generated by a marginal increase in the offer, we term the

ratio


0
 ( )

( )
the marginal intensity of within-sector separation from  in sector . In each

sector, (2.16) requires that the marginal intensity of within-sector hiring at every value 

should be balanced by the marginal intensity of within-sector separation from  .

In contrast to within-sector marginal intensities, the marginal intensity of between-

sector hiring at  by sector  from sector − is −0
− ( )  ( ), and the marginal

intensity of between-sector separation at  from sector  to sector − is − 0
− ( )  ( ).

The sum of the marginal intensities of within-sector and between-sector hiring by sector

 is the marginal intensity of overall hiring at  in sector , 0 ( )  ( ). The sum of

the marginal intensities of within-sector and between-sector separation from sector  is the

marginal intensity of overall separation at  in sector , −0 ( )  ( ). Although the
marginal intensities of within-sector hiring and separation in a sector should be equal to

each other at every value, the marginal intensities of between-sector hiring and separation

in a sector are not necessarily equal to each other. Neither are the marginal intensities of

overall hiring and separation in a sector.
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2.5. The Definition of the Steady State

We define the steady state of the economy as follows:

Definition 2.1. The steady state of the economy consists of the measure of unemployed

workers, , the measure () and the distribution () of workers employed in each sector

, the measure () and the distribution () of offers/vacancies in each sector , expected

profit of a vacancy (), and the value functions of workers. These variables and functions

are time-invariant and satisfy the following requirements. (i) Optimal offers in each sector

 satisfy (2.8). (ii) Expected profit of a vacancy is equalized between the two sectors,

as required by (2.10). (iii) The value functions satisfy (2.1), (2.2), (2.3),   =  and

  ≥  . (iv) The measures of workers, the distributions of workers and the distributions

of offers satisfy (2.11) - (2.14), with + +  = 1, + = 1,   0 and   0.

The following remarks clarify the definition. First, we focus on the steady state where

the two sectors co-exist, i.e.,   0 and   0. The co-existence requires restrictions

on parameters that will be specified in Propositions 4.1 and 5.1. Second, we separate (i)

and (ii) for operational reasons. The equal-profit condition within each sector, (i), will be

used to find the equilibrium relationships between the offer and employed distributions,

for any given (). The equal-profit condition between sectors, (ii), will be used to

solve for  and . Third, it is straightforward to derive the wage rate distributions

from the value distributions. For example, the distribution of wage rate offers in sector ,

denoted as (), obeys (( )) = ( ), where ( ) is the wage rate needed to

generate the value  in sector . The density function of wage rate offers in sector  is

 0
() =  0

 ( )
0
( ), where 

0
( ) is given by (2.4).

Let us denote  = supp∩supp and term  the overlapping set. If  has positive

measure, the distributions in the two sectors are said to be overlapping, the steady state to

be an overlapping steady state, and the worker values in  to be overlapping values. If 

has zero measure, the distributions in the two sectors are said to be non-overlapping and

the steady state to be a non-overlapping steady state. From the equilibrium configurations

in Figure 1, the steady state is overlapping if and only if    ̄. In this case, the upper
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bound on  is the smaller one between ̄ and ̄. If the steady state is non-overlapping,

then   ≥ ̄. In this case, Remark 1 shows   = ̄, and so  contains the singleton

{̄} or, equivalently, { }. Let  0 ( −) denote the left-hand derivative of  at  and

 0 ( +) the right-hand derivative of  at  . The following lemma states these features of

 and the bounds on the supports (see Appendix A for a proof):

Lemma 2.2.  =
£
 min{̄ ̄}

¤
. If  has zero measure, then   = ̄. Maintain

Assumption 1 and assume   0 and   0. If ̄ lies in the interior of supp−, then

 0
−
¡
̄ +


¢−  0
−
¡
̄ −
¢
= −

¡
̄
¢
 0


¡
̄ −
¢

(2.17)

−
¡
̄
¢ £
 0
−
¡
̄ +


¢−  0
−
¡
̄ −
¢¤ ≤  0



¡
̄ −
¢

(2.18)

where  ( )  0 is defined in (A.2) in Appendix A. Thus,  0


¡
̄
¢
= 0 if and only

if  0
−
¡
̄ +


¢
=  0

−
¡
̄ −
¢
, while  0



¡
̄ −
¢
 0 if and only if  0

−
¡
̄ +


¢
  0

−
¡
̄ −
¢
and

−
¡
̄
¢
−

¡
̄
¢ ≤ 1. Similarly, if   lies in the interior of supp, then

 0


¡
 −
¢−  0



¡
 +



¢
=  ( )

0


¡
 +



¢
(2.19)

 ( )
£
 0


¡
 −
¢−  0



¡
 +



¢¤ ≥  0


¡
 +



¢
 (2.20)

Thus,  0
 ( ) = 0 if and only if 

0


¡
 −
¢
=  0



¡
 +



¢
, while  0



¡
 +



¢
 0 if and only if

 0


¡
 −
¢
  0



¡
 +



¢
and  ( ) ( ) ≥ 1.

Lemma 2.2 shows that the cumulative distribution functions in one sector may fail to

be differentiable if an interior point in the sector’s support is a bound on the other sector’s

support.9 Consider the case where ̄ lies in the interior of supp−. If  is differentiable at

̄, i.e., if 
0


¡
̄
¢
= 0, then − is differentiable at ̄. In this case, the tradeoff of hiring

and separation against the wage cost is smooth on the two sides of ̄ for firms in the two

sectors, and so (2.17) and (2.18) are both satisfied. If  is not differentiable at ̄, i.e.,

if  0


¡
̄ −
¢
 0, then − is not differentiable at ̄, with  0

−
¡
̄ +


¢
  0

−
¡
̄ −
¢
. In this

case, the marginal benefit and cost in hiring and separation change discontinuously when

9(2.15) shows that  is not differentiable at  if and only if  is not differentiable at  .
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the offer changes from one side of ̄ to the other side. (2.17) ensures that a firm in sector

− is indifferent between the offers on the two sides of ̄, and (2.18) ensures that it is not
profitable for a firm in sector  to offer values above ̄.

To elaborate, suppose  0


¡
̄ −
¢
 0, where ̄ lies in the interior of supp−, and let   0

be arbitrarily small. When a firm increases the offer from ̄ −  to ̄, the firm increases

hiring from and reduces separation to other firms in sector . Since (2.15) ties marginal

hiring to marginal separation in the steady state, this benefit from sector  is proportional

to  0


¡
̄ −
¢
. This benefit does not arise when a firm increases the offer from ̄ to ̄ + ,

because no workers are employed above ̄ in sector . However, a firm in sector − must
be indifferent among the offers on the two sides of ̄ in order for ̄ to lie in the interior

of supp−. For such indifference, the asymmetry in the benefit from sector  should be

offset by the opposite asymmetry in the benefit from sector −. That is, the increase from
̄ to ̄ +  should yield a higher benefit of hiring and separation from sector − than
the increase from ̄ −  to ̄ does. This requires

£
 0
−
¡
̄ +


¢−  0
−
¡
̄ −
¢¤
to be positive

and related to  0


¡
̄ −
¢
according to (2.17), where the multiplier −

¡
̄
¢
converts the

between-sector benefits or losses into amounts comparable with the within-sector terms.

In contrast, a firm in sector  should not profit from offering values above ̄. To ensure

this, the increase in the offer from ̄ to ̄ +  should yield a benefit from sector − that
is less than or equal to the loss from sector . This requirement is (2.18), where −

¡
̄
¢

is applied to the benefit from sector − because this benefit is from the other sector for a

firm in sector .

For the lower bound   to lie in the interior of supp, the required conditions, (2.19)

and (2.20), can be explained similarly to the above, with two modifications. First, the

inequality between the densities of  on the two sides of   holds as 
0


¡
 −
¢ ≥  0



¡
 +



¢
,

instead of the other way around, because  0


¡
 +



¢ ≥  0


¡
 −
¢
= 0. Second, the deviation

to be prevented is a downward deviation below   by a firm in sector , in contrast to an

upward deviation above ̄ by a firm in sector . This contrast explains why the inequality

in (2.20) is opposite to that in (2.18).
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The potential non-differentiability is caused by between-sector search. If  =  = 0,

then −
¡
̄
¢
= −

¡
̄
¢
= 0 and  ( ) =  ( ) = 0 (see (A.2)). In this case,

(2.17) shows that  0
−
¡
̄
¢
exists, and (2.19) shows that  0

 ( ) exists. Moreover, since

 ( ) ( ) = 0 violates the condition for 
0


¡
 +



¢
 0, then  0

 ( ) = 0. We

extend these results to sufficiently small ( ):

Remark 3. Suppose that  and  are sufficiently close to 0. If ̄ lies in the interior of

supp−, then  0
−
¡
̄
¢
exists. If   lies in the interior of supp, then  0

 ( ) exists and

 0
 ( ) = 0.

Beyond Lemma 2.2, the equilibrium is difficult to analyze even in the steady state.

The main difficulty is that the flows of workers between the two sectors depend on the

distributions in the two sectors, as reflected by the two integrals in (2.12) and (2.13).

Although (2.15) seems a simpler alternative, it cannot be solved analytically in general,

because  involves both  and −, and  involves both  and −. In sections 3 - 5,

we will explore a property that makes the steady state tractable. When this property does

not hold, we will compute numerical examples in section 6. In that case, Lemma 2.2 will

provide initial conditions for solving the system of functional equations in the equilibrium.

3. Constant Tension and the Link to the One-Sector Model

For a tractable analysis, we explore the property that  ( )  ( ) is constant for all  ∈
supp. We term this property constant tension in sector . Since  and  are differentiable

in the interior of the support, constant tension in sector  is equivalent to

0 ( )
 ( )

=
−0 ( )
 ( )

for all  in the interior of supp (3.1)

That is, constant tension means that the marginal intensities of overall hiring and sepa-

ration are balanced at every value in the interior of the support of the distribution in a

sector. To see how constant tension improves tractability and to connect to the literature,

we establish Lemma 3.1 and Corollary 3.2 (both are proven in Appendix A):
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Lemma 3.1. Assume  ( )  ( ) =  for all  ∈ supp, where   0 is a constant.

Then

 −   =




½
2 [ ( )−  ( )] +  ln

∙
 +  ( )

 +  ( )

¸¾
 (3.2)

In the limit  → 0,  ( ) and  ( ) are given by

 ( )−  ( ) =
−
2

( −  )  (3.3)

 ( )−  =  ( ) ( −  )−


4
( −  )

2
 (3.4)

The solution (3.2) is the inverse function of the separation rate in sector . Constant

tension leads to this explicit solution because it links all endogenous elements of the ex-

pected profit function of a vacancy exclusively to the separation rate in that sector. To see

this, consider a vacancy offering  in sector . Constant tension links the hiring rate of

the vacancy to the reciprocal of the separation rate at  in sector . Since the derivative

of the wage rate implied by  in sector  is a linear function of the separation rate (see

(2.4)), expected profit of the vacancy given by (2.7) depends only on the separation rate

 ( ) and its integral. Across all equilibrium offers in sector , expected profit of a vacancy

must be the same. In the form (2.9), this equilibrium requirement produces a differential

equation in  ( ), which can be solved to yield (3.2).

It is remarkable that if there is constant tension, the separation rate is a linear function

of the offer when time discounting goes to zero.10 To explain how this result arises, let

us suppress the subscript . When time discounting vanishes, the present value of a filled

job is the profit flow discounted by the separation rate. With constant tension, the hiring

rate of a vacancy offering  is proportional to 1 ( ), and so expected present value of

the profit of the vacancy is proportional to [ −  ( )] 2 ( ) (see (2.7)). Because such

expected profit must be constant over all optimal offers, then − ( ) = 2 ( ) for some

constant   0. This implies 0 ( )  ( ) = −20 ( ). Recall 0 ( ) =  ( ) when → 0

10In this paper, “linear” means “affine”. Also, the equilibrium with no time discounting means the limit

 → 0 of the sequence of equilibria with   0. As is well known, an economy literally at  = 0 may admit

more equilibria than the limit equilibrium.
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(see (2.4)). Thus, when time discounting vanishes, constant tension implies that 0 ( ) is

constant over  ; i.e.,  ( ) is a linear function. Also, since 0 ( ) is linear in this case, the

wage function is quadratic, as in (3.4).

To appreciate the significance of Lemma 3.1, we note that the one-sector BM model is

a special case of the lemma. The following corollary states this fact and the implications:

Corollary 3.2. The one-sector model has the following properties. (i)  ( )  ( ) =  for

all  ∈ £  ̄ ¤, where  =  ( + ), and so  ( ) is given by (3.2) without the subscript

. (ii) For all   0, the density function of value offers is strictly increasing. (iii) In the

limit  → 0,  ( ) satisfies (3.3) and  ( ) satisfies (3.4), with  ( ) = +. In this limit,

the offer distribution of values is uniform and given as

 ( ) =


2
( −  )  (3.5)

where we have normalized  = 1, and the density function of wage rate offers is

 0
 =



2

h
( + )

2 − 


( − )

i−12
. (3.6)

In the one-sector BM, the steady state has constant tension because there is no distinc-

tion between within-sector and overall hiring or separation. Since the marginal intensities

of within-sector hiring and separation are balanced at every worker value (see (2.16)), the

marginal intensities of overall hiring and separation are balanced at every value automat-

ically. The latter balance is constant tension (see (3.1)). The wage density function (3.6)

is well known from BM. However, it has remained largely unknown in the literature that

offers in the worker value are uniformly distributed in the limit → 0.

The uniform distribution of value offers, although striking, comes from the linear sep-

aration rate generated by constant tension in the limit  → 0. It is useful to explain why

value offers are more evenly spread out than wage offers. A higher wage rate enables a

firm to fill a vacancy more quickly and to retain the worker for a longer time. Because of

these benefits of a high wage rate to a firm, more firms must compete at high wages than

at low wages in order to equalize expected profit of a vacancy across all equilibrium wage
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offers. That is, the density of wage offers is an increasing function, as is well known in the

BM. However, because a worker separates less at higher wage rates, the same increase in

the wage rate translates into a larger increase in the worker value when the wage rate is

high than when the wage rate is low. In this sense, value offers more evenly spread out. In

the limit  → 0, the density of value offers becomes completely flat.11

Constant tension is not unique to the one-sector model. The following proposition

describes the cases of constant tension with two sectors (see Appendix B for a proof):

Proposition 3.3. Assume that the steady state has constant tension in the two sectors.

If  =  = 0, the steady state is necessarily overlapping. If   0 or   0, the

steady state is non-overlapping except possibly for a measure zero set of parameter values

that satisfy   ,   ,  =  and  −  =  − .

The case  =  = 0 will be analyzed in section 4 and the case with non-overlapping

support in section 5. If   0 or   0, constant tension requires the steady state to

be non-overlapping, except possibly for a measure zero set of parameter values that satisfy

all of the conditions in Proposition 3.3. To see why this result arises, suppose that an

overlapping steady state with constant tension exists with positive between-sector search

rates. We explain why this supposition is inconsistent with the steady state.

First, the two sectors’ separation rates must be proportional to each other at all overlap-

ping values. At an overlapping value, constant tension requires the marginal intensities of

overall hiring and separation to be equal to each other in each sector. Because the marginal

intensities of within-sector hiring and separation are equal to each other, then the marginal

intensities of between-sector hiring and separation are also equal to each other at every over-

lapping value. For sector A, this requirement is 
0
 ( )  ( ) = 

0
 ( )  ( )

for all overlapping values. Since  is also offered in sector B, steady state flows within

sector B require 
0
 ( )  ( ) =  0

 ( )  ( ). These two requirements are both

satisfied only if  ( ) =  ( ) for all overlapping values, where   0 is a constant.

11In this case, the employed density of worker values is still increasing.
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Second,  = 1, and so  ( ) =  ( ) for all overlapping values. A firm must be in-

different between all offers in the overlapping set and between the two sectors. Specifically,

(2.9) represents the local indifference between different offers in sector . With constant

tension, all three terms on the left-hand side of (2.9) are related exclusively to the sepa-

ration rate. If  6= 1, a change in  in the overlapping set would change some of these

terms in different proportions between the two sectors, in which case (2.9) would not hold

in both sectors on all overlapping values (see Appendix B for the details). Thus,  = 1

must hold. Note that this further implies 0 ( ) = 0 ( ) for all overlapping values and

so  =  (see (3.2)), where  is the constant tension in sector .

Third, the offer densities in both sectors are strictly positive in the interior of the

overlapping set  . Since the separation rate in  is equal between the two sectors, −0 is
the common determinant of the offer densities in the two sectors in  . The solution (3.2)

shows that −0 ( )  0 in the interior of  . Thus,  0
 ( ) and  0

 ( ) are also strictly

positive in the interior of  , which remain strictly positive when  approaches the bounds

of  from within  . Since  0


¡
 +



¢
 0, Lemma 2.2 implies that  0

 is discontinuous at  

in the form  0


¡
 −
¢
  0



¡
 +



¢
. Moreover, if ̄  ̄, then 

0
 is discontinuous at ̄ in

the form  0


¡
̄ +


¢
  0



¡
̄ −
¢
, because  0



¡
̄ −
¢
 0. If ̄  ̄, then 

0
 is discontinuous

at ̄ in the form  0


¡
̄ +


¢
  0



¡
̄ −
¢
, because  0



¡
 −
¢
 0.

Finally, these features implied by constant tension on the overlapping set are inconsis-

tent with equal profitability of a vacancy between the two sectors. For brevity, we explain

the inconsistency in the case   , and refer the other cases to Appendix B. In

this case,    and    must hold. If  ≤ , for example, then   ,

in which case sector A poaches workers from sector B at a faster rate than sector B does

from sector A, and so sector B will not exist in the steady state. Suppose    and

  . With the relatively small between-sector search rates, a firm in one sector ob-

tains a relatively small benefit from the other sector by increasing the offer. In this case,

the two conditions for   to lie in the interior of supp, (2.19) and (2.20), cannot both be

satisfied. For a firm in sector B to be indifferent among the offers on the two sides of  ,

the benefit to a firm in sector B generated by increasing an offer from ̄−  to ̄ must be
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relatively small, but in this case it is profitable for a firm in sector A to deviate to offers

below  . Since   must coincide with  , the requirements  ( ) =  ( ) and

(2.15) lead to  −  =  −  and  = , which can only be satisfied by a measure

zero set of parameter values.

4. Between-Sector Search Only by Unemployed Workers

In this section we impose the restrictions  =  = 0 so that an unemployed worker

can search in both sectors, but an employed worker can search on the job only in the

worker’s incumbent sector. These restrictions force any sectoral transitions of workers to

be interrupted by a spell of unemployment. Despite these restrictions, the case encompasses

all studies of multi-sectoral search models without on-the-job search as special cases. The

latter impose the additional restrictions  =  = 0, an example of which is Beaudry

et al. (2012). In contrast, with   0 and   0, employed workers’ search in their

incumbent sector directly affects expected profit of a vacancy in each sector and, hence,

the distribution of vacancies both within each sector and between the two sectors. This

equilibrium effect affects all workers’ transitions and creates a link between the entire

sector-specific wage distributions, not just the average wage rates. The proofs of all results

in this section are in Appendix C.

With  =  = 0, the separation rate of a worker from a firm in sector  depends

only on the offer distribution in sector  and not on the offer distribution in the other

sector. Also, the hiring rate of a firm in sector , , depends only on the employed

distribution in sector  and not on the employed distribution in the other sector. These

features of hiring and separation imply that the marginal intensities of overall hiring and

separation are equal to each other at every value in each sector. That is, there is constant

tension. The following proposition states this result and determines the steady state:

Proposition 4.1. Assume  =  = 0 and denote  = . Then,  ( )  ( ) = 

for all  ∈ supp, where  =  ( + ), and so  ( ) is given by (3.2). Moreover,

  =   (= ), and the two sectors’ distributions necessarily overlap. Consider the limit
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 → 0. The steady state with two active sectors exists if and only if

− ( + 2)
 ( + 2) + 


 − 

 − 






 ( + 2) . (4.1)

The offer and employed distributions in sector  are

 ( ) =
 ( + 1)

2
( −  ) ,  ( ) = 

∙
2

 ( −  )
− 1
¸−1

, (4.2)

and the composition of workers in the economy is:

 =


 +  + 
  =




,  ∈ {} (4.3)

The supports of the distributions have the same lower bound, i.e.,   =  . The

explanation for this result is similar to that for   =  in Remark 1: The case     

would present a profitable opportunity for a firm to offer a worker value in (   ).

However, the argument relies on the assumption in the current case that employed workers

cannot search in the other sector.12

For the two sectors to co-exist, the productivity differential between the two sectors

cannot be too large or too small, as in (4.1). If sector A is much more productive than

sector B, all vacancies will be located in sector A and, with positive exogenous separation,

no worker will be in sector B in the steady state. Similarly, if sector B is much more

productive than sector A, a case ruled out by assumption, all vacancies will be located

in sector B and no worker will be in sector A in the steady state. Equal productivity

between the two sectors is consistent with the co-existence of the two sectors in the steady

state. Also, the bounds on the productivity differential depend on all parameters that

affect workers’ mobility rates in the two sectors, i.e., (  ) for  ∈ {}.

The unemployment rate depends on all mobility parameters. With (4.3), it is easy to

see that the unemployment rate is lower if the exogenous separation rate is lower, if the

arrival rate of an offer to an unemployed worker is higher, or if the arrival rate of an offer

to an employed worker is higher. In contrast, the relative size of employment of sector

12This result holds even without the maintained assumption   ≥  . If     , contrary to the

assumption, then a firm offering   in sector  can profit from reducing the offer slightly, which cannot

be an equilibrium.
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A to sector B, , depends only on the two ratios,  and . The higher is

the ratio , the larger is the relative size of sector  to the other sector. Job-to-job

transition rates affect the size of a sector, but they do not affect the relative size between

the two sectors since there is no between-sector search on the job.

Note that an unanticipated one-time increase in the relative productivity  can

have a dramatic effect on sectoral employment shares, even if the increase is small. Suppose

for example that  satisfies the bound in (4.1) by an amount  before the one-time

shock and violates the bound afterwards by an amount . Then the employment share

of sector  will drop discontinuously from a positive number to zero. The reason is that

steady-state sectoral employment shares depend on frictional parameters only, but not on

the productivity differential, as is required by the steady-state flow equations.

We now characterize a number of properties of the wage- and value distributions. Define

the average wage rate in sector  as E ≡
R ̄
 

 ( )  ( ). The following proposition

compares values and wage rates between the two sectors:

Proposition 4.2. Assume  =  = 0. In the limit → 0, the results (i)-(iv) hold:

(i) ̄  ̄ if and only if

 − 

 − 


 ( − )

 ( + 2) +  + 
 (4.4)

(ii)    if and only if

 − 

 − 


( +  + 2) ( − )

 ( + 2) +  + 
 (4.5)

The lower bound in (4.5) is greater than that in (4.4) if and only if   .

(iii) E − E =
1
2
(̄ − ̄), and so E  E if and only if (4.4) holds.

(iv)  first-order dominates  if and only if ̄  ̄, which is equivalent to

 − 

 − 


 ( + 2)−  ( + 2)

 ( + 2) +  + 

 (4.6)

When  = ,  first-order stochastically dominates  if and only if (4.6) holds.

The comparison between the supports of the two sectors’ distributions depends critically

on the productivity differential between the two sectors and the ratio  = . Because
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this ratio depends on the arrival rate of an offer to an employed worker, on-the-job search

affects the relative level of and relative dispersion in wage rates and values between the

two sectors. This effect of on-the-job search is a general equilibrium effect. Although an

employed worker can only search in the worker’s incumbent sector, such on-the-job search

affects firms’ decisions on which sector to locate a vacancy and what offers to make. As

a result, the distributions of wage rates and worker values in one sector depend on the

on-the-job search parameter  in the other sector.

To understand various conditions in Proposition 4.2, it is useful to consider first the

case  = . In this case, the bounds on the productivity differential in (4.4) and (4.5)

are both zero. Since these two conditions are satisfied, the highest wage rate in sector A is

higher than that in sector B, and the lowest wage rate in sector A is lower than in sector

B. In this sense, higher productivity increases dispersion in wage rates in sector A relative

to sector B. This effect of productivity on wage dispersion is intuitive. When productivity

is higher in sector A, competition among firms pushes the highest wage rate in the sector

above that in sector B. Expecting this larger room for the wage rate to grow in sector A,

an unemployed worker is willing to accept a lower wage rate to start in sector A than in

sector B. Despite a lower starting wage rate in sector A, the lifetime income of starting at

the lowest wage rate is the same in the two sectors, as given by   =  .

The larger dispersion in wage rates in sector A relative to sector B is not a mean-

preserving spread. In the case  = , in particular, the average wage rate is higher in

sector A than in sector B. The between-sector differential in the average wage rate is a half

of the between-sector differential in the highest wage rate.13

It is remarkable that these comparisons between the two sectors in the case  =  are

independent of  and , the arrival rates of offers from the two sectors to unemployed

workers. The arrival rates  and  affect the levels of wage rates in each sector, but

13Although the density function of the wage distribution in each sector is increasing, the overall distrib-

ution of wage rates in the economy can have different shapes. For example, when the support of sector B’s

distribution is contained as a subset of the support of sector A’s distribution, the density function of the

overall distribution of wage rates may increase first, have a drop at the upper bound of sector B’s support,

and then increasing again.
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they do not affect whether the support of the wage rate distribution is wider in one sector

than in the other sector, provided  = .

The comparison between the two sectors’ wage rates does not necessarily carry over

to the comparison between the present values. We have already explained that the lowest

worker value is the same in the two sectors. However, whether the highest worker value in

sector A is higher than that in sector B depends on the difference between the two sectors’

on-the-job search parameter , as well as on the ratio . If the highest value in sector

A exceeds that in sector B, then value offers are higher in sector A than in sector B in

the sense of first-order order stochastic dominance, because the distribution of values is

uniform in each sector. This result holds independently of whether  is equal to .

In the case  = , sector A has higher offers than sector B in the sense of first-order

stochastic dominance if and only if the productivity differential between the two sectors is

large relative to the differential between the two sectors’ arrival rates of offers to employed

workers. A sufficient condition for this dominance is  ≤ . The same condition is

sufficient for employed workers to have higher values in sector A than in sector B in the

sense of first-order stochastic dominance. To explain these results, note that in the case

 = ,  ≤  is equivalent to  ≤ . Thus, if  ≤  and if the two sectors have

the same distribution, then an employed worker separates from a job no more likely in

sector A than in sector B. Given higher productivity in sector A, a firm can make higher

profit in sector A. Competition among firms drives up the highest value in sector A to be

above that in sector B. If   , the same result occurs when the productivity differential

between the two sectors dominates the between-sector difference in the separation rate.

To further understand the importance of search frictions, we compare the two sectors

when  6= . If   , most of the above comparisons between the two sectors are

still valid. If   , the above comparisons hold only if the difference ( − ) is small

relative to the productivity differential between the two sectors, as given by (4.4) - (4.6). To

explain why these conditions are needed, note that the case    can be interpreted as

one where on-the-job search frictions are more severe in sector A than in sector B, because
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the offer arrival rate to employed workers relative to the exogenous separation rate is lower

in sector A than in sector B. The productivity differential must dominate this differential

in on-the-job search frictions in order for sector A to have a larger highest wage rate and

a larger average wage rate than sector B.14

We can also compare the two sectors’ worker transition rates. With the distributions

in (4.2), the average job-to-job transition rate in sector  isZ ̄

 

 [1−  ( )]  ( ) = 

∙
( + 1) ln

µ
1 +

1



¶
− 1
¸
.

The expression inside [] is a strictly decreasing function of . Recall  = . If the two

sectors have the same exogenous job separation rate, then a sector has a higher average

rate of job-to-job transitions if and only if the offer arrival rate to employed workers is

higher in that sector. Also, the product of  and the above expression in [] is a strictly

increasing function of . Thus, holding  to be the same in the two sectors, the sector with

a higher exogenous separation rate also has a higher average rate of job-to-job transitions.

The reason is that with a higher exogenous separation rate, the job-to-job transition rate

must be higher in order to keep the distribution of employed workers over values stationary.

Finally, we examine how the unemployment benefit affects the steady state:15

Corollary 4.3. Assume  =  = 0. An increase in the unemployment benefit  in-

creases (̄ − ̄), increases (E − E), and reduces ( − ), if and only if   .

Such an increase in  increases
¡
̄ − ̄

¢
if and only if  ( + 2)   ( + 2).

If  = , the unemployment benefit has no effect on the spread in wage rates. If

 6= , the effect of the unemployment benefit on wage rates is not uniform between the

two sectors. If   , the support of wage rates in sector B is contained in the support

in sector A. In this case, an increase in the unemployment benefit reduces the wage spread

in sector A relative to sector B by reducing the gap between the two sectors in both the

14When   , the offer arrival rates to unemployed workers, ( ), affect the bounds in (4.4) -

(4.6) and, hence, affect the spread in values in one sector relative to the other sector.
15An increase in  has no effect on (  ) because the total number of vacancies is fixed. If there is

free entry of vacancies, then an increase in  will increase  by reducing the profitability of a vacancy.
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highest and the lowest wage rate. If   , an increase in the unemployment benefit

increases the wage spread in sector A relative to sector B. In particular, if the support

of wage rates in sector B is still contained in the support in sector A, an increase in the

unemployment benefit in the case    makes the highest wage rate even higher and

the lowest wage rate even lower in sector A relative to sector B. Recall that on-the-job

search frictions are more severe in sector A than in sector B if and only if   . Thus,

an increase in the unemployment benefit increases the wage spread in the sector with more

severe frictions in on-the-job search relative to the other sector.

In contrast to wage rates, the spread in worker values can increase in  by more in

sector A than in sector B even if  = . This is the case if   .

5. Non-Overlapping Distributions with Between-Sector Search

In this section we allow all workers to search in both sectors, but restrict the parameters in

such a way that the distributions in the two sectors do not overlap. Recall that   = ̄

in the non-overlapping steady state (see Lemma 2.2). Proposition 3.3 has shown that if

the steady state has constant tension with   0 and   0, then it is non-overlapping

generically. The following proposition shows that the reverse is also true and characterizes

the non-overlapping steady state (see Appendix D for a proof):

Proposition 5.1. If the steady state is non-overlapping, then it has constant tension,

and so the separation rate is given by (3.2). Focus on the limit  → 0. A non-overlapping

steady state with two active sectors exists if and only if

 − 

 − 
 max{1 0}  − 

 − 
 max{2 0}, (5.1)

3 ( − ) + 4 ( − ) ≥ 0 (5.2)

where (1 2 3 4) are constants defined in Appendix D. If (but not only if)  ≥
, there exists a non-empty set of values of ( ) that satisfy (5.1) and (5.2). The

sufficient conditions for   ̄ are  =  and   . Moreover, an increase in the

unemployment benefit  reduces (̄ − ) and
¡
̄ −  

¢
if and only if 2 ( − ) 
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( + )
2
. An increase in  always reduces (̄ − ) and

¡
̄ −  

¢
, and increases

(̄ − )  (̄ − ) and
¡
̄ −  

¢

¡
̄ −  

¢
.

When the two sectors’ distributions do not overlap, the steady state has constant tension

because the between-sector flow of employed workers is one directional: from sector B to

sector A. Because an offer in sector B is accepted only by employed workers in sector B

and unemployed workers, the hiring rate of a vacancy in sector B depends only on sector

B’s, but not on sector A’s, employed distribution. Thus, the marginal intensity of hiring

within sector B is equal to the marginal intensity of overall hiring in sector B at every

value. Also, because all offers in sector A are accepted by all workers employed in sector

B, the hiring rate of a vacancy in sector A depends on sector A’s employed distribution

but not on sector B’s employed distribution. Although the measure of workers employed in

sector B affects the hiring rate in sector A, this effect is the same on all offers in sector A.

Thus, the marginal intensity of hiring within sector A is equal to the marginal intensity of

overall hiring in sector A at every value. Similarly, the marginal intensity of within-sector

separation from a worker value is equal to the marginal intensity of overall separation from

that value in the same sector. In this case, (2.16) implies that the marginal intensities

of overall hiring and separation are equal to each other at every value in a sector. This

equality is equivalent to constant tension (see (3.1)).

The conditions in (5.1) are necessary and sufficient for the two sectors to co-exist. Not

surprisingly, these conditions require the productivity differential between the two sector

to be neither too large nor too small. Too large a differential in productivity will eliminate

sector B, and too small a differential productivity will eliminate sector A. However, the

conditions in (5.1) are not sufficient for the non-overlapping steady state to exist — (5.2)

is also needed.16 This additional condition makes it not profitable for a firm in sector A

to deviate to an offer slightly below   or for a firm in sector B to deviate to an offer

slightly above ̄. Although (5.2) restricts the productivity differential further, in general

it cannot be written in the format of (5.1), because neither 3 nor 4 is necessarily positive.

16Recall that we have focused on the steady state with   ≥  . The violation of (5.2) does not rule

out the existence of a non-overlapping steady state with   =    .

33



If 3  0, then (5.2) becomes −
−  −4

3
, which is stronger than the first part of (5.1).

Regardless of the sign of 3, there exists a non-empty region of the parameters in which

(5.1) and (5.2) are both satisfied.

Although worker values in the two sectors do not overlap under (5.1) and (5.2), wage

rates can overlap. Specifically, if  =  and   , then the lowest wage rate in sector

A is lower than the highest wage in sector B. These sufficient conditions for overlapping

wage rates are intuitive. Consider two workers both employed at the wage rate ̄, one

in sector A and the other in sector B. For both workers, the only upward mobility is to

move to firms in sector A that offer higher wage rates. If   , the worker employed

in sector A has higher upward mobility than the worker employed in sector B. If  = ,

in addition, the two workers face the same rate at which their current job is destroyed

exogenously. Thus, the value for the worker employed in sector A at ̄ must be strictly

higher than the value for the worker employed in sector B at the same wage rate. This

means that for   = ̄ to hold as is required in the non-overlapping steady state, the

wage rate  that delivers the value   in sector A must be strictly lower than ̄.

Finally, an increase in the unemployment benefit  affects the spread in wage rates

and the spread in values in the two sectors. An increase in  increases wages, reduces the

profitability of a vacancy in both sectors, and suppresses the spread in wage rates and the

spread in values in the sector closer to unemployed workers in values, namely, sector B. This

squeezing effect of a higher  transmits into sector A through competition among firms. If

the exogenous separation rate in sector A does not exceed that in sector B by too much, the

spread in wage rates and the spread in values also become narrower in sector A. However,

this squeezing effect of  is not uniform between the two sectors. Because productivity is

lower in sector B than in sector A, the profit margin is also smaller in section B. As an

increase in  increases wages, the profit margin falls by a larger proportion in section B

than in sector A. Although the measure of vacancies falls in both sectors, it falls by more

in sector B, which compresses the spread in wage rates in sector B by more than in sector

A. This increases the ratio of the wage spread in sector A to sector B.
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Proposition 5.1 characterizes the non-overlapping steady state generally. To illustrate

such a steady state, we turn to a specific case with the following restrictions:





=



=




= 




=




= 

µ
=





¶
, (5.3)

where   0 and   0 are arbitrary constants. Note that these require   0 and   0.

The first set of restrictions in (5.3) requires that, for all workers, the arrival rate of an offer

from sector A should be  times that from sector B. The ratio  is independent of where

a worker is located in the economy, i.e., whether a worker is unemployed and in which

sector a worker is employed. Of course, the offer arrival rate in each sector can still depend

on where a worker is. The second set of restrictions in (5.3) requires that the exogenous

separation rate in sector A relative to sector B should be equal to the relative rate at which

an employed worker in sector A, versus sector B, receives an offer from sector A. Note that

(5.3) implies  = , where  =  for  = . According to the explanation in

section 4, a higher  implies more severe frictions in on-the-job search. Thus, frictions in

on-the-job search are less severe in sector A than in sector B if and only if   1.

The special case  = 1 is easier to explain. In this case, the second set of restrictions

in (5.3) becomes  = ,  = , and  = . A worker separates exogenously into

unemployment at the same rate in the two sectors, an employed worker receives an offer

from sector A at the same rate independently of which sector the worker is employed,

and an employed worker receives an offer from sector B at the same rate independently of

which sector the worker is employed. The only differences between the two sectors are the

differentials in productivity and in the rate at which a sector’s offer reaches a worker.

For arbitrary constants   0 and   0, (5.3) yields

 ( )

 ( )
= ,

 ( )

 ( )
=  for all  .

The marginal intensity of overall hiring at any value, 0 ( )  ( ), is equal between the

two sectors, and so is the marginal intensity of overall separation at any value,−0 ( )  ( ).
The difference between these two rates, which is the marginal intensity of churning in a

sector, must be equal between the two sectors at all values. However, the marginal in-

tensities of churning must sum up to zero between the two sectors in order to maintain
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the steady state. This is possible if and only if the marginal intensity of churning is zero

in each sector. Since the latter result is equivalent to constant tension (see (3.1)), (5.3)

implies constant tension.17

With constant tension (and    0), Proposition 3.3 implies that the steady state

is non-overlapping. We summarize this result and the implications of Proposition 5.1 in

this case in the following corollary (the proof is omitted):

Corollary 5.2. Assume (5.3). The steady state has constant tension and is non-overlapping.

Such a non-overlapping steady state with two active sectors (and with   ≥  ) exists if

and only if

 − 

 − 
 max{2 0}  − 

 − 
≥ max{−4

3
 } (5.4)

where   0 is an arbitrarily small number and18

2 =
 − 1

 ( + 2) + 1

−4
3

=
(− 1)  [ ( + 2) + 2]

 [ ( + 2) + 2] + (+ 1)
2


 (5.5)

All of these conditions are satisfied if (but not only if)  ≤ 1 and  ≤ .

Two clarifications are useful. First, since (5.3) is sufficient for constant tension and non-

overlapping distributions, the additional conditions in (5.4) are imposed not for generating

these features. Rather, the first condition in (5.4) is for the two sectors to co-exist. The

second condition in (5.4) is for   ≥   and, if this condition is violated, then the steady

state will still be non-overlapping but will have   =    . Second, if  =  = 1,

the two sectors are symmetric except productivity. Such symmetry is sufficient for (5.3)

and hence for the steady state to be non-overlapping, but it is not necessary. Finally,

when  = 1, the non-overlapping steady state with two active sectors exists for all values

of  ∈ (0∞). Even if the arrival rate of an offer from sector A is lower than from sector

B (i.e.,   1), sector A provides higher worker values than sector B. In this case, the

17To prove this result formally, differentiate (2.6) for  = , substitute (2.15), and use  =  to get

0 = 

³
1

 0 +




 0
´
. Since  =  and  =  , then 0 = 

¡
 0 +

1

 0
¢
.

Differentiating (2.5) for  =  and using  = , we get 
0
 = −0. Similarly, 0 =

−0.
18The first condition in (5.1) is not needed in this special case because it is implied by (5.2).
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measure of firms in sector A may be smaller than in sector B to ensure expected profit of

a vacancy to be the same in the two sectors.

6. Non-Constant Tension and Between-Sector Search

In this section, we examine an economy with non-constant tension. By Proposition 5.1,

non-constant tension necessarily requires two-directional flows of employed workers between

the two sectors. Since these flows make it difficult to analyze the steady state in general,

we compute some examples. The following parameters are fixed in the numerical examples:

 = 005,  =  = 0074,  = 0111,  = 0128,

 =  = 00101,  = 105,  = 1,  = 03.

Although the search parameters are loosely calibrated to the empirical transition rates in

the Survey of Program Participations, they should be taken as a suggestive instead of a

definitive representation of the data.

Example: 1 2 3 4

 0 0003 0006 0002

 0 0003 0006 0006

We explore the effect of between-sector search on the equilibrium by changing the

parameters,  and , as in Examples 1-4. Example 1 has constant tension but Examples

2-4 do not. For each combination of the parameter values, we compute the solution to the

system of ordinary differential equations formed by (2.9) and (2.15), with the equilibrium

restrictions on the bounds of the supports given by Lemma 2.2 and Remark 3.19

Figure 2 depicts the offer distributions in the two sectors in Example 1. These distri-

butions are approximately linear because Example 1 has constant tension and a small :

when  → 0, these functions should be exactly linear. As in section 4, the two sectors

have the same lowest value offer. The highest value offered in sector A is strictly higher

than the highest value offered in sector B. Moreover, offers in sector A first-order stochas-

tically dominate those in sector B. This between-sector ranking extends the results in (iv)

in Proposition 4.2 to a case with positive and small time discounting.

19A description of the computation procedure is available upon request.

37



Figure 2. Offer distributions in Example 1:  =  = 0

Figure 3. Offer distributions in Example 2:  =  = 0003

Figure 3 depicts the offer distributions in Example 2. Similar to Example 1, the two

sectors have the same lowest offer, and offers in sector A first-order stochastically dominate

those in sector B. The offer distribution is still close to a uniform distribution in sector

B, but not so in sector A. The slope of the cumulative distribution of offers in sector A is

increasing, which implies that the density of offers in sector A is an increasing function.

Because high offers in sector A can attract more workers from both sectors, more firms

make high offers than low offers in sector A so as to ensure that expected profit is equalized

across all equilibrium offers.

Figures 4 and 5 contrast the offer distributions in Example 2 with Example 1. An

increase in  increases offers in both sectors in first-order stochastic dominance. This is
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intuitive. When employed workers can search between sectors at a higher rate, competition

for workers intensifies among the firms, which increases the offers in both sectors. Note

that the offer distribution in sector A shifts to the right by more than that in sector B.

Figure 4. Offer distribution in sector A with  = 0 and  = 0003

Figure 5. Offer distribution in sector B with  = 0 and  = 0003

Table 2 lists other features of the equilibria. First, an increase in the between-sector

search rate  reduces the fraction of vacancies in sector B, , reduces the measure of

workers in sector B, and increases the measure of workers in sector A. A relatively small

increase in  in both sectors, from 0 in Example 1 to 0006 in Example 3, reduces the

fraction of workers employed in sector B by 22% from 0430 to 0335. The measure of

unemployed workers does not change much in the four examples. Second, the two sectors

have approximately the same lowest wage rate in the four examples, with the lowest wage

rate in sector A being slightly lower than that in sector B, but the highest wage rate in
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sector A is higher than that in sector B. Similarly, the two sectors have approximately the

same lowest worker value in the four examples, but the highest value in sector A is higher

than that in sector B. Thus, sector A has a larger spread in both wage rates and values

than sector B. This result extends the possibilities in (i) and (ii) in Proposition 4.2 from

an economy with  =  = 0 to an economy with small   0 and   0.

Table 2. Features of the steady state

Example 1 2 3 4




0

0

0003

0003

0006

0006

0006

0002

 0.463 0.461 0.460 0.454

 0.496 0.530 0.592 0.574

 0.430 0.397 0.335 0.352

 0.075 0.074 0.074 0.074

 0.592 0.610 0.620 0.614

̄ 0.885 0.927 0.956 0.925

 0.596 0.613 0.623 0.610

̄ 0.839 0.865 0.860 0.891

  12.30 12.79 13.16 12.88

̄ 16.72 17.50 18.04 17.48

  =  12.30 12.78 13.15 12.87

̄ 15.87 16.39 16.42 16.81

Third, an increase in the between-sector search rate  increases the spread in wage rates

by more in sector A than in sector B. Similarly, an increase in the between-sector search

rate  increases the spread in values by more in sector A than in sector B. In this sense, an

increase in between-sector search increases inequality in sector A relative to sector B. This

is consistent with the empirical evidence in Hoffmann and Shi (2011). Hence, our model can

generate an inequality enhancing effect in the growing sector even without worker or firm

heterogeneity. Finally, the contrast between the last two columns in Table 2 shows that

when search between the sectors is easier for sector A workers than for sector B workers,

the spreads in wage rates and values decrease in sector A and increase in sector B.
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7. Concluding Remarks

This paper has characterized the steady state of a two-sector economy with on the job

search and explored a property called constant tension. If the steady state has constant

tension, the separation rate in each sector can be solved explicitly. When time discounting

vanishes, this solution becomes a linear function of the worker value. The linear separation

rate may be of independent interest. Because offer distributions are not observed, the

linear separation rate enables one to solve offer distributions easily, which can simplify the

computation and estimation of the model.

Constant tension relies on the steady state flow equations heavily, which can be a lim-

iting factor for analyzing dynamics. For the dynamics in the one-sector BM model, the

literature has made significant progress by introducing sufficient heterogeneity in produc-

tivity among firms and/or allowing firms to match offers in a second-price auction (e.g.,

Moscarini and Postel-Vinay, 2013; Lise and Robin, 2013). A promising alternative is to

model search as a directed process (e.g., Shi, 2009; Menzio and Shi, 2011), as opposed to

undirected search in the BM model. More specifically, Hoffmann and Shi (2011) have used

a directed search model to account for the stylized facts on sectoral reallocation. It remains

to be checked how the long-run predictions of the two-sector BM model differ from those

of the models of directed search.
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Appendix

A. Proofs of Lemma 2.2, Lemma 3.1 and Corollary 3.2

In Lemma 2.2, the result  =
£
 min{̄ ̄}

¤
follows from the configurations in Figure

1. If  has zero measure, then   ≥ ̄. In this case, Remark 1 shows   = ̄.

Assuming   0 and   0, we prove the remainder of Lemma 2.2. Suppose that ̄

lies in the interior of supp−. Consider the choice of a firm in sector − between the offer
̄ − and the offer ̄ +

 . Because ̄ lies in the interior of supp−, both ̄ − and ̄ +
 satisfy

the first-order condition in sector − with equality. That is, with the subscript − instead
of  on the functions, (2.9) holds with equality for  = ̄ − and  =  +

 . Subtracting the

condition for these two offers yields:

0−
¡
̄ −
¢− 0−

¡
̄ +


¢
−

¡
̄
¢ − 0−

¡
̄ −
¢− 0−

¡
̄ +


¢
 + −

¡
̄
¢ = 0 (A.1)

where we have used the fact that − and − are continuous functions. Because  ( ) =

 ( ) = 0 for all   ̄, then  0


¡
̄ +


¢
= 0



¡
̄ +


¢
= 0. Using these results and differen-

tiating (2.6) for sector −, we get

0−
¡
̄ +


¢
= −−

0
−
¡
̄ +


¢
=

−−
¡
̄
¢

−
¡
̄
¢  0

−
¡
̄ +


¢


where the second equality comes from (2.15). Similarly,

0−
¡
̄ −
¢
=

−−
¡
̄
¢

−
¡
̄
¢  0

−
¡
̄ −
¢
+

−
¡
̄
¢


¡
̄
¢  0



¡
̄ −
¢
.

Differentiating (2.5) yields:

0−
¡
̄ −
¢
= −− 0

−
¡
̄ −
¢− 

0


¡
̄ −
¢
 0−

¡
̄ +


¢
= −− 0

−
¡
̄ +


¢


Substituting these derivatives into (A.1) yields (2.17) where

− ( ) ≡
∙
 +

− ( ) [ + − ( )]
 ( )− ( )

¸
1

−

µ
2 +



− ( )

¶−1
 (A.2)

For ̄ to be the upper bound on the support of , it must be the case that the first-

order condition for a sector  firm, (2.9), is satisfied with equality at  = ̄ − and with

inequality “≤” at  = ̄ +
 . Subtracting the condition for the two cases yields

0
¡
̄ −
¢− 0

¡
̄ +


¢

¡
̄
¢ − 0

¡
̄ −
¢− 0

¡
̄ +


¢
 + 

¡
̄
¢ ≥ 0 (A.3)
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Computing the derivatives 0 and 0, and substituting into (A.3), we obtain (2.18).

Under the hypothesis   0 and   0, it is easy to verify that − ( )  0 and

− ( )  0. Then, (2.17) shows that  0


¡
̄ −
¢
= 0 only if  0

−
¡
̄ +


¢
=  0

−
¡
̄ −
¢
. Since

the features  0
−
¡
̄ +


¢
=  0

−
¡
̄ −
¢
and  0



¡
̄ −
¢
= 0 satisfy (2.18), then  0



¡
̄ −
¢
= 0 if

and only if  0
−
¡
̄ +


¢
=  0

−
¡
̄ −
¢
. Similarly, for  0



¡
̄ −
¢
 0, (2.17) and (2.18) are both

satisfied if and only if  0
−
¡
̄ +


¢
  0

−
¡
̄ −
¢
and −

¡
̄
¢
−

¡
̄
¢ ≤ 1.

If   lies in the interior of supp, we can replace ̄ with  , set  =  in the

above proof, and notice that (2.9) holds with inequality “≥” at  − for  = . Since

 0 ¡ −¢ = 0


¡
 −
¢
= 0, the same procedure as the above leads to (2.19) and (2.20).

From these conditions we can deduce that  0


¡
 +



¢
= 0 if and only if  0



¡
 −
¢
=  0



¡
 +



¢
,

while  0


¡
 +



¢
 0 if and only if  0



¡
 −
¢
  0



¡
 +



¢
and  ( ) ( ) ≥ 1. This

completes the proof of Lemma 2.2.

For Lemma 3.1, suppose  ( )  ( ) =  for all  ∈ supp, where   0 is a constant.
Consider any arbitrary  ∈ supp. Then, (2.9) holds as equality, and ̂ ( ) =  by (2.8).

Substituting  =  into (2.9), we get:µ
2− 

 +  ( )

¶
0 ( ) =

−


. (A.4)

Integration yields (3.2). In the limit  → 0, (3.2) implies (3.3). Also, since (2.4) implies

0 ( ) =  ( ) when  → 0, integration yields (3.4). This proves Lemma 3.1.

To prove Corollary 3.2, suppose that there is only one sector and normalize  = 1.

The subscript  is irrelevant in this case. With only one sector, (2.5) and (2.6) become:

 ( ) =  +  [1−  ( )] ,  ( ) = +  ( ) .

Differentiating these equations yields 0 ( ) = − 0 ( ) and 0 ( ) = 0 ( ). Then,

()
0
= 0+ 0 =  [0−  0] = 0

where the last equality follows from (2.15). Thus,  ( )  ( ) =  for all  , where   0

is a constant, which shows that the one-sector economy satisfies the hypothesis in Lemma

3.1. Then,  ( ) satisfies (3.2), without the subscript  and with  = 1. Moreover, setting

 =  reveals  =  ( + ). This is property (i) in the corollary. For property (ii),

differentiate (3.2), or simply use  =  in (2.9), to get 0 = −(+)
(+2)

 0. Differentiating

0 yields 00 ( ) = 0

(+2)2
 0 for all   0. Thus,  00 ( ) = −00( )


 0 for all   0.

For property (iii), consider the limit  → 0 in the one-sector economy. Then,  ( ) sat-

isfies (3.3) and  ( ) satisfies (3.4), with  ( ) = +. Because  ( ) = + [1−  ( )],

43



(3.3) implies (3.5). Moreover, given the wage rate, (3.4) is a quadratic equation of ( −  ).

Solve this equation for ( −  ), and take the smaller one of the two solutions to ensure

 ( )  0. Then,  0
 =  0 ( ) 0 ( ) yields (3.6). QED

B. Proof of Proposition 3.3

The following Lemma will be used in the proof of Proposition 3.3:

Lemma B.1. Assume that the steady state has constant tension, with  ( )  ( ) = 

for all  ∈ supp, and that the distributions in the two sectors overlap on the set 

of positive measure specified in Lemma 2.2. If  ( ) =  ( ) for all  ∈  and

some constant   0, then  = 1 and the following results hold for all  ∈  : (i)

 ( ) =  ( ); (ii)  = ; (iii)  ( )−  ( ) =  − , and (iv)

− =

⎧⎪⎨⎪⎩
( − )

R ̄
̄
[1−  ()] + ( − )

¡
̄ − 

¢
 if ̄ ≥ ̄

( − )
R ̄
̄
[1−  ()] + ( − )

¡
̄ − 

¢
 if ̄  ̄

(B.1)

Proof. Maintain the hypotheses in the lemma. Also, let  ( ) =  ( ) for all

 ∈  and some constant   0, where  has positive measure. Consider any  ∈  .

Recall that constant tension implies (A.4). Dividing (A.4) for  =  by the same equation

for  =  and using  ( ) =  ( ), we obtain




=
[ + 2 ( )] [ +  ( )]

[ +  ( )] [ + 2 ( )]
 (B.2)

The left-hand side of (B.2) is constant over  . For all   0, if  6= 1, the right-hand side
of (B.2) varies with  , in which case (B.2) cannot hold for all  ∈  . Thus,  = 1 for all

  0. Since the steady state with no time discounting is interpreted as the limit  → 0 of

the sequence of steady states with   0, then  = 1 in the limit  → 0.

With  = 1,  () =  () for all  ∈  , as stated in (i) of the lemma. Also, (B.2)

becomes  = , as stated in (ii) of the lemma. Because  =  ( )  ( )

for  = , and  ( ) =  ( ) for all  ∈  , then (ii) implies  ( ) =

 ( ). With the equilibrium feature ̂ ( ) = , (2.7) yields

 −  ( ) = [ +  ( )]


 ( )


Because the right-hand side of this equation is independent of , the left-hand side must

be independent of . That is,  ( )−  ( ) =  −  for all  ∈  , as stated in (iii)

of the lemma. Moreover, because 0 ( ) =  +  ( ),  = , integration yields

 ( ) =  ( ) +

Z 

 

[ +  ()]  for all  ∈ 

44



Subtracting the versions of this equation for  =  and for  =  and using (i), we get

 ( )−  ( ) =  ( )−  ( ) for all  ∈  (B.3)

To establish (iv) of the lemma, we consider first the case ̄ ≥ ̄ and then the case

̄  ̄. In the case ̄ ≥ ̄, the overlapping set of the two sectors’ distributions is

 =
£
  ̄

¤
. Consider any  ∈  . Using the definition of  in (2.5), we rewrite (2.2)

and (2.3) for any overlapping worker value as

 =  ( ) + 

Z ̄

̄

[1−  ()] +

Z ̄



 () − 
¡
̄ − 

¢
 =  ( ) + 

Z ̄

̄

[1−  ()] +

Z ̄



 () − 
¡
̄ − 

¢


Subtracting the two equations, and using (B.3) and  () =  () for all  ∈  , we get

 ( )−  ( ) = ( − )

Z ̄

̄

[1−  ()] + ( − )
¡
̄ − 

¢


In the case ̄ ≥ ̄, (B.1) follows from this equation, (B.3), and (iii).

In the case ̄  ̄, the overlapping set of the distributions is  =
£
  ̄

¤
. In this

case, the Bellman equations for any overlapping value  can be written as

 =  ( ) + 

Z ̄

̄

[1−  ()] +

Z ̄



 () − 
¡
̄ − 

¢
 =  ( ) + 

Z ̄

̄

[1−  ()] +

Z ̄



 () − 
¡
̄ − 

¢


The same procedure as the above establishes (B.1) in the case. QED

Proof of Proposition 3.3:

According to the hypotheses in the proposition, let  ( )  ( ) =  for all  ∈ supp,
 = . If  =  = 0, the steady state is necessarily overlapping, as shown in

Proposition 4.1. Assume   0 or   0. Suppose that the distributions overlap on 

that has positive measure. We derive a contradiction.

We first prove  ( ) =  ( ) for all  ∈  and some   0, and so the hypotheses in

Lemma B.1 are satisfied. Consider any  ∈  . Constant tension in sector − is equivalent
to

0−
−

=
−0−
−
. From this equation, subtract (2.16) for sector −. Using (2.5) to compute

0− and (2.6) to compute 
0
−, this subtraction yields

−0
 ( )

− ( )
=


0
 ( )

− ( )
.
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Because  0
 ( )  0 and 0

 ( )  0 for all  ∈  , dividing this equation by (2.16) yields

− ( )
− ( )

=
 ( )

− ( )
.

Substituting  =  for  =  into the above result yields

 [ ( )]
2
=  [ ( )]

2
for all  ∈  (B.4)

When   0 or   0, (B.4) can hold only if   0 and   0. For this reason, we

assume   0 and   0 in the remainder of this proof. Then,  ( ) =  ( ) for all

 ∈  , where  =
³



´12
. Lemma B.1 implies  = 1 and results (i)-(iv). Note that

 = 1 can be written as  = .

To complete the proof, we consider three cases in turn:

Case 1:  = . In this case,  = , which is temporarily denoted .

Then, (2.5) yields the following equation for all  ∈  :

 ( )−  ( ) = ( − ) + ( − )

½
1−  ( ) +

1


[1−  ( )]

¾


Differentiating this equation and using 0 ( ) = 0 ( ), we get

 = , and so  =  (B.5)

Under (B.5), the requirement  ( ) =  ( ) for all  ∈  is satisfied only if  = .

With (B.5) and  = , (B.1) yields the contradiction  = .

For Cases 2 and 3 below,  6= . In these cases, differentiate (2.5) to solveµ
 0
 ( )

 0
 ( )

¶
=

−0 ( )
 − 

µ
 − 
 − 

¶
for all  ∈ interior of  (B.6)

where we suppressed the subscript of  because  ( ) is independent of  for all  ∈  .

Since   0 and   0, then −0 ( )  0 for all  in the interior of the support of sector
’s distribution (see (A.4)). For  and  to overlap on the set  of positive measure, it

is necessary that  0
 ( )  0 and  0

 ( )  0 for all  in the interior of  . With (B.6),

this requirement is satisfied only if

 − 

 − 
 0 and

 − 

 − 
 0 (B.7)

Note that (A.4) implies −0
¡
 +



¢
 0 and −0

¡
̄ −
¢
 0 for  = . If  6=

, (B.6) and (B.7) imply  0


¡
 +



¢
 0,  0



¡
̄ −
¢
 0 and  0



¡
̄ −
¢
 0, where ̄ =

min{̄ ̄}. Moreover, using (2.6) to compute 0
 and substituting  = , we can

show that (2.15) is consistent with (B.6) for all  ∈  if and only if  = .
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Case 2:   . We prove ̄ = ̄ in this case. Suppose, to the contrary, that

̄ 6= ̄. Then, ̄ must lie in the interior of supp− for either  =  or  = . Since

 0


¡
̄ −
¢
 0, as shown above, then −

¡
̄
¢
−

¡
̄
¢ ≤ 1 by Lemma 2.2, where  ( )

is defined in (A.2). The above proof has shown that  ( ) = − ( ) and  ( ) − ( ) =

− = − for all  ∈  . Using these results, we get

−
¡
̄
¢
=



−
, −

¡
̄
¢
=

−




The requirement −
¡
̄
¢
−

¡
̄
¢ ≤ 1 becomes − ≥ −, which is violated. Thus,

̄ = ̄ must hold in this case.

With ̄ = ̄, the requirement 
¡
̄
¢
= 

¡
̄
¢
yields  = . With  =  and

̄ = ̄, (B.1) in Lemma B.1 implies the contradiction  = .

Case 3:   . In this case, (B.7) requires    and   . We

prove   =   in this case. Suppose   6=  , to the contrary. Since   ≥  

by assumption, then     . Since 
0


¡
 +



¢
 0, as shown above, then  0



¡
 −
¢


 0


¡
 +



¢
and  ( ) ( ) ≥ 1 by Lemma 2.2. Because  ( ) =  ( ) and

 ( )  ( ) =  = , we can compute

 ( ) =



,  ( ) =






The requirement  ( ) ( ) ≥ 1 becomes  ≤ , which is violated in

the current case. Thus,   =   must hold in this case.

With   =  , the requirement  ( ) =  ( ) yields  −  =  − , where we

have used the result  = . Thus, the steady state is non-overlapping except possibly

when   ,   ,  =  and  −  =  − . QED

C. Proofs for Section 4

We first prove Proposition 4.1. Following the same procedure as the one in the proof

of Corollary 3.2, we can verify that  ( )  ( ) =  for all  ∈ supp, where  =

 ( + ). Thus, Lemma 3.1 is valid here and  ( ) is given by (3.2). To prove   =

 , suppose     , to the contrary. There exists   0 such that   −    .

Consider  ∈ (  −   ). Then,  ( ) =  ( ) = 0. Because this is true for

all  in the interval (  −   ), then 0
 ( ) =  0

 ( ) = 0 in this interval, and so

0 ( ) = 0 ( ) = 0. By the derivation of (2.9) from (2.8), for such  we have

̂0 ( ) ∼
− ( )
̂ ( )

 0,
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where ∼ means having the same sign. This result contradicts the optimality condition

(2.9) for the case  =  − ; that is, reducing the offer from   to a slightly lower value

strictly increases expected profit of a vacancy. Thus,   =   must hold.

In the limit  → 0, (3.2) becomes (3.3). With  =  = 0, (3.3) implies the formula of

 in (4.2). Since +  =  = , we can solve . After substituting  =


,

which is proven below, the solution of  becomes the formula in (4.2).

In the limit  → 0,  ( ) is given by (3.3). We characterize the steady state in Steps

(a)-(e) below and prove the remainder of Proposition 4.1. In particular, Steps (d) and (e)

establish the necessary and sufficient conditions in (4.1) for the steady state to exist.

Step (a): Solve (  ). Setting  = ̄ in the result  ( )  ( ) =  =  ( + )

and using  = 1 −  − , we solve the composition of workers in the two sectors and

unemployment as in (4.3).

Step (b): Solve
¡
̄  ̄

¢
for  ∈ {}. Setting  = ̄ in (3.3) yields

̄ −   =
2

 ( + 1)
. (C.1)

Because ̂ ( ) =  for all  ∈ supp, then (2.7) and  =  imply the following wage

function in the limit  → 0:

 ( ) =  − 
2
 ( )

 ( + 1)
, for all  ∈ supp. (C.2)

Setting  =   and  = ̄ in turn, this wage function yields:

 =  − 


 ( + 1)  ̄ =  − 

2


 ( + 1)
 (C.3)

Step (c): Solve (  ). Even in the limit  → 0, the value   is strictly positive. Setting

 =   in (2.2) and  =   in (2.3), and noticing  =  = 0, we get

  =  + 

Z ̄

 

[1−  ( )] 

where we have used the result   =  on the right-hand side. To compute the above

integral, note that (3.3) implies  = −2


 ( ), and the definition of  implies

1−  =
−

. Substituting these results, we getZ ̄

 

[1−  ( )]  = −2



Z 

+

(− ) 
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where the integration bounds in the second integral are the value of  at the boundaries

of supp. Computing the integral and substituting  =  ( + ), we obtainZ ̄

 

[1−  ( )]  =


 ( + 1)


Substituting this result and  from Step (b), the formula of   gives

  =  −  ( + 2)

 ( + 1)
. (C.4)

Similarly, (2.1) yields:

 = +


 ( + 1)
+



 ( + 1)
 (C.5)

Step (d): Solve ( ) and find the conditions for  ∈ (0 1) and   0.

Subtracting (C.5) from (C.4) and invoking   = , we arrive at

( − ) =
 ( + 2)

 ( + 1)
+



 + 1
+



 + 1
.

Setting  =  and  = , we solve the two linear equations:

 =



( + 1)

½∙
−
−

− (− + 2) + 1

¸
( − )− (− − )

¾
(C.6)

where

 ≡ 



 ( + 2)

∙




 ( + 2) + 1

¸
+





 ( + 2) .

Add up (C.6) for  =  and  = . Since  +  = 1 and  =  = , we get .

Substituting the solution of  for  in (C.6), we obtain .

For  ∈ (0 1) and   0, it is necessary that   0 for both  =  and  = .

Using (C.6), we can write these necessary requirements as (4.1). Also, (4.1) is sufficient

for   0 and  ∈ (0 1) for  = . To see why, suppose that (4.1) holds, so that

  0 and   0. Then,  =  +  0. Since   0,   0 and

  0, then   0 and   0. Because  +  = 1, then   1 and   1.

Thus, (4.1) is necessary and sufficient for   0,   0 and   0.

Step (e): Find the conditions under which deviations outside the supports of the distri-

butions are not profitable. The procedure of analyzing such deviations is similar to that

in the proof of Lemma 2.2 in Appendix A. However, since  =  = 0 and   =   in

the current case, the procedure yields no additional restrictions on the steady state. Thus,

either ̄ ≥ ̄ or ̄  ̄ is possible. This establishes Proposition 4.1.

49



Now we prove Proposition 4.2. Substituting  from (C.6) into (C.3) and comparing

the outcome for  =  with the outcome for  = , we can verify (i) and (ii). To prove

(iii), use  =  to derive  ( ) = −


−2 . Substituting this result and (C.2) into

the definition of E, we integrate to obtain

E =  − 


 (C.7)

With this formula and (C.6), it is straightforward to verify (iii). For (iv),  first-order

stochastically dominates  if and only if  ( ) ≤  ( ) for all  , where the inequality

is strict for a positive measure of values on the support. With the formula of  in (4.2), this

stochastic dominance is equivalent to 
(+1)

 
(+1)

which, by (C.1), is equivalent

to ̄  ̄. Substituting  from (C.6) into (C.1) and comparing ̄ with ̄, we can

verify that ̄  ̄ if and only if (4.6) holds. Moreover, with the formula of  in (4.2),

it is clear that  first-order stochastically dominates  in the case  =  if and only

if 


 


, which is equivalent to (4.6) in this case.

Corollary 4.3 can be verified directly with the above expressions for
¡
̄ E ̄

¢
.

QED

D. Proof of Proposition 5.1

Assume that the distributions in the two sectors do not overlap. Then,   = ̄ by Lemma

2.2. Setting  =  in (2.5) and (2.6) and considering any  ∈ supp, we get
 ( ) =  +  [1−  ( )] 

 ( ) = +  +  ( ) 

Differentiation yields  0
 ( ) = −0 ( )  and 

0
 ( ) = 0 ( ) . Substituting

these results into (2.15) yields [ ( )  ( )]
0
= 0. Thus,  ( )  ( ) =  for all  ∈

supp, where  =  ( )  ( ). Similarly,

 ( ) =  +  +  [1−  ( )] 

 ( ) = +  ( ) 

We can deduce  ( )  ( ) =  for all  ∈ supp, where  =  ( )  ( ).

To find the conditions for the non-overlapping steady state to exist, we characterize

the steady state in the limit  → 0. Steps (a)-(d) are similar to those in the proof of

Proposition 4.1, with the modification   = ̄ instead of   =  , but Step (e) is

different. Step (a) yields (  ) and

 =  ( + )

µ
 +



 + 

¶
  =  ( +  + ) . (D.1)
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Step (b) yields

̄ −   =



. (D.2)

 =  − ( + )
2 


 ̄ =  − 2






 =  − ( +  + )
2 


 ̄ =  − ( + )

2 


.

(D.3)

Note that ̄ −   ∈ (0∞) even though ̄ and  →∞ when → 0. Step (c) yields

  =  −  ( + 2)


− 2



̄ →   =  + 


− £( + )

2
+ 2

¤



 = + 



+  ( + 2)





(D.4)

where we have substituted
¡
̄ −  

¢
from (D.2) into the right-hand side of the Bellman

equations. Note that ̄ →   because  → 0, although ̄   . In step (d), we

invoke the requirements for the non-overlapping steady state,   = ̄ and   = .

With (D.4), these requirements solveµ



¶
=
1



µ
1 2
3 4

¶µ
 − 
 − 

¶
 (D.5)

where  = 14 − 23 (different from  in the proof of Proposition 4.1) and

1 = ( + )
2
+  (2 +  + 2)  2 = ( + )

2
+ 2 ( − )

3 =  ( − )  4 =  ( + 2) + 
(D.6)

Similar to the proof of Proposition 4.1, ∈ (0 1) and   0 if and only if 

0 and   0. It can be verified that   0, 1  0 and 4  0. Then,   0

and   0 if and only if (5.1) holds, where

1 =
−2
1

 2 =
−3
4

 (D.7)

Step (e) yields (5.2) in Proposition 5.1. We find the condition under which it is not

profitable for a firm in sector A to deviate below   or for a firm in sector B to deviate

above ̄. The procedure is similar to that in the proof of Lemma 2.2 in Appendix A, but

the results differ because the two distributions do not overlap in the current case. Consider

first a firm in sector A that deviates to  −. For this deviation not to be profitable, the

required condition ̂0
¡
 −
¢ ≥ 0 is the second case of (2.9) for  = . We calculate the
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derivatives 0
¡
 −
¢
and 0

¡
 −
¢
in the condition. Because  ( ) =  ( ) = 0 for all

   , then  0


¡
 −
¢
= 0



¡
 −
¢
= 0. (2.5) for  =  implies

 0


¡
 −
¢
=
−1


0
¡
 −
¢


Differentiating (2.5) and (2.6) for  = , we get

0
¡
 −
¢
= − 0



¡
 −
¢
=




0
¡
 −
¢


0
¡
 −
¢
= 

0


¡
 −
¢
=

 ( )

 ( )
 0


¡
 −
¢
=
−


2
 ( )

0
¡
 −
¢
.

The second equality in the result for 0 uses (2.15) and the third equality uses constant

tension. Note that the superscript− on   is dropped from  and  because these functions

are continuous. Substituting these results, we can write the second case of (2.9) for  = ,

i.e., ̂0
¡
 −
¢ ≥ 0, as

0 ≤ −
0


¡
 −
¢



∙
 ( )


2
 ( )

+


 ( )

¸
−  ( )


,

where we have used the limit  → 0. For any arbitrarily small   0, since (  − ) lies

in the interior of supp, the first-order condition for a firm in sector B holds as equality

at this offer. With constant tension, this implies that (A.4) holds at  − for  = .

When  → 0, (A.4) implies 0
¡
 −
¢
= −

2
. Substituting this result and substituting

( ( )   ( )) from (2.5), we rewrite the above condition for ̂0
¡
 −
¢ ≥ 0 as




≥ 5 ≡ 2

"




µ
 + 

 + 

¶2
+ 

#−1


Similarly, we can consider a firm in sector B that deviates to the offer ̄ +
 . For this

deviation not to be profitable, the required condition ̂0
¡
̄ +


¢ ≤ 0 is the third case of (2.9)
for  = . Adapting the above procedure to this case, we can express the condition as




≥ 6 ≡ 1

2

"




µ
 + 

 + 

¶2
+ 

#


Define 7 = max{5 6} and note 7  0. Then, ̂0
¡
 −
¢ ≥ 0 and ̂0

¡
̄ +


¢ ≤ 0 if and
only if




≥ 7. Under (D.5), this condition is equivalent to (5.2) where

3 = 1 − 73 4 = 2 − 74 (D.8)

To prove that  ≥  is sufficient for the existence region to be non-empty in the

parameter space, suppose  ≥ . Then, 3 ≤ 0 and 2 ≥ 0. Moreover, since 3  0 in
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this case, (5.2) can be rewritten as −
− ≥

−4
3
. Because  = 14 − 23  0, it can be

verified that −4
3

 1 in this case, and so (5.1) and (5.2) are equivalent to

 − 

 − 
≥ max{−4

3
 }  − 

 − 
 2 (D.9)

where   0 is an arbitrarily small number. If 4 ≥ 0, the first condition in (D.9) is satisfied
by all    and the second condition is satisfied in an non-empty interval of ( ).

If 4  0, (D.9) is equivalent to

3

−4 ≥
 − 

 − 
 2

Since 14  23, then
3
−4  2, and so the above interval for

−
− is non-empty.

Using (D.3), we can derive the condition for   ̄ as

0   −  − ( + )
2 


+ ( + )

2 




In the case  = , substituting (D.5) into the above condition yields

0  ( − )
£
( + )

2
+  (2 +  + 2)

¤
( − )

+ ( − ) ( + )
2
( − ) 

Thus,  =  and    are sufficient for   ̄.

To find the effect of an increase in  on the spreads in wage rates and values, note from

(D.2) and (D.3) that 

(̄ − )  0 and




¡
̄ −  

¢
 0 if and only if 



³



´
 0.

With (D.5), this condition is equivalent to 2  0, which can be written as 2 ( − ) 

( + )
2
. Similarly, 


(̄ − )  0 and




¡
̄ −  

¢
 0 if and only if 



³



´


0, which is equivalent to 4  0 and is always satisfied. The ratios (̄ − )  (̄ − )

and
¡
̄ −  

¢

¡
̄ −  

¢
increase in  if and only if 



³



´
 0. With (D.5), the

latter condition is equivalent to 14 − 23  0, which is satisfied. QED
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